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Abstract We study a variational problem on H1(R) under an L∞-constraint related to
Sobolev-type inequalities for a class of generalized potentials, including Lp-potentials, non-
positive potentials, and signed Radon measures. We establish various essential tools for this
variational problem, including the decomposition principle, the comparison principle, and
the perturbation theorem, which are the basis of the two-step minimization method. As for
their applications, we present precise results for minimizers of minimization problems, such
as the study of potentials of Dirac’s delta measure type and the analysis of trapped modes in
potential wells.
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1 Introduction

In our previous paper [1], we considered the following variational problem for a positive bounded
potential V ∈ L∞(R) with ess infx∈RV (x)> 0:

m(V ) := min
u∈H1(R),∥u∥∞=1

∫
R
(|u′(x)|2 +V (x)|u(x)|2)dx, (1.1)

where ∥u∥∞ := ∥u∥L∞(R). The above variational problem (1.1) is closely related to the problem of
finding the best constant for the following Sobolev-type inequality for the L∞-norm:

∥u∥∞ ≤C∥u∥V , (1.2)

where
∥u∥2

V :=
∫
R
(|u′(x)|2 +V (x)|u(x)|2)dx.

The best constant of the Sobolev-type inequality (1.2) is given by m(V )−1/2. The Sobolev-type
inequality has been studied in various settings [3, 4, 5, 6]. We proposed a two-step minimization
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approach to the variational problem (1.1) in [1]. This approach enabled us to evaluate the best
constant for inhomogeneous positive bounded potentials precisely.

The aim of this paper is to consider the variational problem (1.1) with a more general class
of potentials V , including unbounded potentials, non-positive potentials, and the Dirac delta mea-
sures, and to extend the two-step minimization approach to them. We provide various essential
tools for this variational problem, such as the decomposition principle that provides the basis for
the two-step minimization method, the comparison principle, the perturbation theorem, the ex-
istence and some properties of the minimizer, the continuity of the minimum value in the first
minimization step, etc.

As applications of those tools, we consider two specific potential cases. For a potential that
contains the Dirac delta measure, applying our comparison principle, we give an alternative proof
for the best constant of the Sobolev-type inequality

∥u∥∞ ≤C
(∫

R

(
|u′(x)|2 +α|u(x)|2

)
dx+β |u(0)|2

) 1
2

,

by [5] in Theorem 4.5. The other application is devoted to the case for a potential well. By using
the precise property of the minimizer, we will provide sufficient conditions for the trapped mode
in terms of the depth and width of the potential well.

The structure of this paper is as follows. Section 2 introduces a class of generalized potentials
and demonstrates the decomposition principle underlying the two-step minimization approach. In
Section 3, we survey the results of [1] for positive bounded potentials, which are necessary for the
discussion of this paper. Section 4 describes a comparison principle and a perturbation theorem of
m(V ) for generalized potentials. As their application, we give an alternative proof for the potential
given by a constant plus Dirac delta measure. In Section 5, we study the existence of the minimizer
in the first minimization step and also the continuity of the minimum value. We finally provide a
sufficient condition for the trapped mode in the potential well.

2 Generalized potential and decomposition principle

In this paper, we deal with Sobolev-type inequalities related to the Schrödinger-type operator
− d2

dx2 +V with a potential term V . We begin this section by introducing a general class of the
potential V . We define

X := {V : H1(R)×H1(R)→ R; V is a bounded symmetric bilinear map}.

Then, it is known that X is a Banach space over R with the norm:

∥V∥X := sup
u,v∈H1(R),u,v ̸≡0

|V (u,v)|
∥u∥H1(R)∥v∥H1(R)

.

Without loss of generality, we suppose that u ∈ H1(R) (or more generally, u ∈ W 1,p
loc (R) for

p ∈ [1,∞]) always satisfies u ∈ C0(R), since an element of the function space W 1,p
loc (R) has a

continuous representation (Theorem 8.8 of [2]). We also remark that u∈H1(R) satisfies u∈ L∞(R)
and lim|x|→∞ u(x) = 0 (Theorem 8.8 and Corollary 8.9 of [2]).

We remark that Lp(R) (1 ≤ p ≤ ∞) is continuously embedded in X by identifying V ∈ Lp(R)
with the following Ṽ ∈ X :

Ṽ (u,v) :=
∫
R

V (x)u(x)v(x)dx (u,v ∈ H1(R)),
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where Vuv ∈ L1(R) is clear from uv ∈ L1(R)∩L∞(R)⊂ Lq(R) for any q ∈ [1,∞].
We denote the set of signed Radon measure V on R with finite total variation |V |TV := |V |(R)<

∞ by M1(R). For example, the Dirac measure δa belongs to M1(R). It is defined by δa(A) = 1 if
a ∈ A, and δa(A) = 0 if a ̸∈ A for a ∈ R and A ∈ B(R), where B(R) is the set of Borel sets on R.
We also remark that L1(R)⊂ M1(R) and |V |TV = ∥V∥L1(R) holds for V ∈ L1(R).

Then, V ∈ M1(R) is also considered as V ∈ X by identifying V with the following Ṽ ∈ X :

Ṽ (u,v) :=
∫
R

uvdV (u,v ∈ H1(R)).

It is well-defined since uv ∈C0(R)∩L∞(R) and ∥Ṽ∥X ≤ 2|V |TV holds since∣∣Ṽ (u,v)
∣∣≤ ∥u∥∞∥v∥∞|V |TV ≤ 2∥u∥H1(R)∥v∥H1(R)|V |TV ,

where the last inequality follows from ∥u∥∞ ≤
√

2∥u∥H1(R) (see p.213 of [2]). We note that the
best constant of this inequality is ∥u∥∞ ≤ 1√

2
∥u∥H1(R) (see [1]).

For V ∈ X , we define

I(u;V ) := ∥u′∥2
L2(R)+V (u,u) (u ∈ H1(R)),

and define a Rayleigh-type quotient:

R(u;V ) :=
I(u;V )

∥u∥2
∞

(u ∈ H1(R)\{0}).

We also define m(V ) ∈ [−∞,∞) and M(V ) by

m(V ) := inf
u∈H1(R),u̸≡0

R(u;V ), (2.1)

M(V ) :=
{

u ∈ H1(R)\{0}; m(V ) = R(u;V )
}
.

Then, if and only if m(V )> 0, the following Sobolev-type inequality holds:

∃C > 0 s.t ∥u∥∞ ≤C I(u;V )
1
2 (∀u ∈ H1(R)). (2.2)

In this case, C = m(V )−1/2 gives the best constant of Sobolev-type inequality (2.2).
In this paper, we often consider the class of the generalized potentials L∞(R)+M1(R) ⊂ X ,

where
L∞(R)+M1(R) = {V =V0 +V1 ∈ X ; V0 ∈ L∞(R), V1 ∈ M1(R)}.

We remark that Lp(R) ⊂ L∞(R)+M1(R) holds for any p ∈ [1,∞]. Indeed, it is trivial if p = ∞,
and if p ∈ [1,∞), let V ∈ Lp(R) and set A := {x ∈ R; |V (x)|> 1}, V0(x) := (1− χA(x))V (x), and
V1(x) := χA(x)V (x), where χA is the indicator function of A. Then, ∥V0∥∞ ≤ 1 and

∥V1∥L1(R) =
∫

A
|V (x)|dx ≤

∫
A
|V (x)|p dx ≤ ∥V∥p

Lp(R) < ∞.

Therefore, we obtain

V =V0 +V1 ∈ L∞(R)+L1(R)⊂ L∞(R)+M1(R),

since V0 ∈ L∞(R) and V1 ∈ L1(R)⊂ M1(R).
In [1], the authors proved the following decomposition principle of the minimization problem

(2.1) for general non-constant bounded positive potentials V ∈ L∞(R), and established the two-
step minimization approach to study the precise properties of the minimizer for the Sobolev-type
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inequality. We aim to extend the two-step minimization approach to the case of the generalized
potential V ∈ X in this paper.

For a ∈ R, we set
Ka := {u ∈ H1(R); u(a) = ∥u∥∞ = 1},

and define
F(a;V ) := inf

u∈Ka
I(u;V ).

We remark that Ka is a closed convex set in H1(R), which implies that Ka is weakly closed in
H1(R).

Theorem 2.1 (decomposition principle). Let V ∈ X and set m(V ) as (2.1). Then, we have

m(V ) = inf
a∈R

F(a;V ). (2.3)

Proof. We first remark that F(a;V ) and m(V ) can have their values in [−∞,∞). For a ∈ R, there
exists {ua,n}∞

n=1 ⊂ Ka such that limn→∞ I(ua,n;V ) = F(a;V ). Since

m(V )≤ R(ua,n;V ) = I(ua,n;V ),

it follows that m(V ) ≤ F(a;V ). Let us define m̃(V ) := infa∈R F(a;V ). Then, taking the infimum
concerning a in m(V )≤ F(a;V ), we obtain m(V )≤ m̃(V ).

Let {un}∞
n=1 be a minimizing sequence attaining the infimum of (2.1). Choosing an ∈ R as

|un(an)|= ∥un∥∞ > 0, we define vn := un(an)
−1un ∈ Kan . Then we have

m(V ) = lim
n→∞

R(un;V ) = lim
n→∞

I(vn;V ),

and m̃(V )≤ m(V ) follows from m̃(V )≤ F(an;V )≤ I(vn;V ) as n → ∞. Hence, we obtain m̃(V ) =

m(V ).

3 Bounded positive potentials

We briefly summarize the results obtained in [1] for the case of bounded positive potentials. In
this section, we suppose

V ∈ L∞(R), 0 < v0 := ess inf
x∈R

V (x), v1 := esssup
x∈R

V (x). (3.1)

Then, for u, v ∈ H1(R), we define

(u,v)V :=
∫
R

(
u′(x)v′(x)+V (x)u(x)v(x)

)
dx, ∥u∥V := (u,u)

1
2
V .

We remark that (u,v)V defines an inner product on H1(R). The corresponding norm ∥u∥V is
equivalent to the norm of H1(R) and it satisfies I(u;V ) = ∥u∥2

V .
We consider the first minimization step:

F(a;V ) = inf
u∈Ka

∥u∥2
V . (3.2)
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Theorem 3.1 ([1]). We suppose the condition (3.1) and fix a ∈ R. Then, there exists a unique
minimizer ua ∈ Ka to (3.2), that is,

ua = arg min
u∈Ka

∥u∥2
V , (3.3)

F(a;V ) = min
u∈Ka

∥u∥2
V = ∥ua∥2

V ,

and it satisfies the following properties:

ua ∈W 2,∞(R\{a}) and u′′a(x) =V (x)ua(x) (a.e. x ∈ R\{a}). (3.4)

e−
√

v1|x−a| ≤ ua(x)≤ e−
√

v0|x−a| (x ∈ R), (3.5)
v0√
v1

e−
√

v1|x−a| ≤ sgn(a− x)u′a(x)≤
v1√
v0

e−
√

v0|x−a| (x ∈ R\{a}). (3.6)

Theorem 3.2 ([1]). We assume (3.1) and suppose that V is a non-decreasing function. Then,
it holds that m(V ) = lima→−∞ F(a;V ) = 2

√
v0. Furthermore, if v0 < v1, then F is a strictly in-

creasing function and M(V ) = /0. If V is constant, then it holds that m(V ) = 2
√

V and M(V ) =

{cua; c ∈ R\{0}, a ∈ R}, where ua(x) = e−
√

V |x−a|.

4 Comparison principle and perturbation theorem

From this section onwards, we consider the generalized potentials. We consider the following
comparison principle of m(V ).

Theorem 4.1 (comparison principle of m(V )). We suppose that V1,V2 ∈ X and that m(V1) ̸= −∞
or m(V2) ̸=−∞. Then we have

inf
u∈H1(R),u̸=0

(V1 −V2)(u,u)
∥u∥2

∞
≤ m(V1)−m(V2)≤ sup

u∈H1(R),u̸=0

(V1 −V2)(u,u)
∥u∥2

∞
. (4.1)

Proof. For V1, let {un}n∈N ⊂ H1(R) be a minimizing sequence to the infimum m(V1) and suppose
∥un∥∞ = 1. Then, it satisfies limn→∞ I(un;V1) = m(V1) and

I(un;V1)−m(V2)≥ I(un;V1)− I(un;V2) = (V1 −V2)(un,un)≥ inf
u∈H1(R),u̸=0

(V1 −V2)(u,u)
∥u∥2

∞
.

Taking the limit as n → ∞, we obtain the first inequality of (4.1). By exchanging V1 and V2, we
derive the second inequality as

m(V1)−m(V2)≤−
(

inf
u∈H1(R),u̸=0

(V2 −V1)(u,u)
∥u∥2

∞

)
= sup

u∈H1(R),u̸=0

(V1 −V2)(u,u)
∥u∥2

∞
.

Corollary 4.2. Under the condition of Theorem 4.1, if (V1 −V2)(u,u) ≥ 0 for u ∈ H1(R), then
m(V2)≤ m(V1) holds.

Also, from Theorem 4.1, we immediately have the following theorem.

Theorem 4.3. We suppose that V ∈ X and m(V ) ̸=−∞. If µ ∈ M1(R), then

−|µ−|TV ≤ m(V +µ)−m(V )≤ |µ+|TV , (4.2)

where µ+ and µ− are the positve and negative parts of the Radon measure µ . In particular, we
have

|m(V +µ)−m(V )| ≤ max
(
|µ−|TV , |µ+|TV

)
≤ |µ|TV .
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Proof. We apply Theorem 4.1 with V1 =V +µ and V2 =V . Then, we have

inf
u∈H1(R),u̸=0

µ(u,u)
∥u∥2

∞
≤ m(V1)−m(V2)≤ sup

u∈H1(R),u̸=0

µ(u,u)
∥u∥2

∞
.

Since µ(u,u) = µ+(u,u)−µ−(u,u), paying attention to the following inequalities

−|µ−|TV∥u∥2
∞ ≤−µ−(u,u)≤ µ(u,u)≤ µ+(u,u)≤ |µ+|TV∥u∥2

∞,

we obtain (4.2). The last inequality also follows from |µ|TV = |µ+|TV + |µ−|TV .

Theorem 4.4. Let V ∈ L∞(R) with ess infx∈RV (x)> 0. We suppose

m(V ) = lim
a→∞

F(a;V ), or m(V ) = lim
a→−∞

F(a;V ). (4.3)

Let p ∈ [1,∞). If µ ∈ Lp(R)+M1(R) ⊂ X is nonnegative, i.e., µ(u,u) ≥ 0 for u ∈ H1(R), then
m(V +µ) = m(V ) and M(V +µ)⊂ M(V ) hold.

Proof. Choosing V1 =V +µ and V2 =V in Theorem 4.1, we have

m(V +µ)−m(V )≥ inf
u∈H1(R),u̸=0

µ(u,u)
∥u∥2

∞
≥ 0. (4.4)

We define ua(x) as in Theorem 3.1. Then, we have

m(V +µ)≤ I(ua;V +µ) = I(ua;V )+µ(ua,ua) = F(a;V )+µ(ua,ua).

From the assumption (4.3), taking the limit as a → ∞ or a →−∞, we obtain

m(V +µ)≤ m(V )+ lim
a→±∞

µ(ua,ua) = m(V ), (4.5)

where the last equality holds as follows.
Let µ = µ0 + µ1 with µ0 ∈ Lp(R) and µ1 ∈ M1(R). Since L1(R) ⊂ M1(R), we assume p ∈

(1,∞) without loss of generality and define q ∈ (1,∞) as p−1 +q−1 = 1. From the estimate (3.5),
we have |ua(x)| ≤ e−

√
v0|x−a|. For R > 0, we define IR := [−R,R] and JR := R \ IR, and suppose

a ∈ JR. Then, |ua(x)| ≤ e−
√

v0(|a|−R) holds for x ∈ IR. Hence, we have

µ0(ua,ua) =
∫

IR

µ0(x)|ua(x)|2 dx+
∫

JR

µ0(x)|ua(x)|2 dx

≤ e−2
√

v0(|a|−R)∥µ0∥L1(IR)+∥µ0∥Lp(JR)∥u2
a∥Lq(R).

Noting that

∥u2
a∥Lq(R) ≤

(∫
R

e−2q
√

v0|x−a| dx
) 1

q

= (q
√

v0)
− 1

q ,

for an arbitrary ε > 0, there exists R > 0 such that ∥µ0∥Lp(JR)∥u2
a∥Lq(R) ≤ ε . Then, there exists R̃ >

R such that e−2
√

v0(|a|−R)∥µ0∥L1(IR) ≤ ε holds for |a|> R̃. It implies that lim|a|→∞ µ0(ua,ua) = 0.
Similarly, we have

µ1(ua,ua) =
∫

IR

|ua|2 dµ1 +
∫

JR

|ua|2 dµ1 ≤ e−2
√

v0(|a|−R)|µ1|(IR)+ |µ1|(JR).
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For an arbitrary ε > 0, there exists R > 0 such that |µ1|(JR) ≤ ε . Then, there exists R̃ > R such
that e−2

√
v0(|a|−R)|µ1|(IR)≤ ε holds for |a|> R̃. It implies that lim|a|→∞ µ1(ua,ua) = 0.

Hence, we conclude m(V + µ) = m(V ) from (4.4) and (4.5). Moreover, for u ∈ M(V + µ),
since we have

I(u;V )≤ I(u;V )+µ(u,u) = I(u;V +µ) = m(V +µ) = m(V )≤ I(u;V ),

I(u;V ) = m(V ) follows and it implies the inclusion M(V +µ)⊂ M(V ).
Using Theorem 4.4, we can give an alternative proof for the following result. We define δ0 ∈

M1(R)⊂ X by δ0(u,v) := u(0)v(0).

Theorem 4.5 (Kametaka et al. [5]). Let α > 0 and β ∈ R. Then m(α +βδ0) = 2
√

α −β− holds,
where β− = max(−β ,0). In particular, if 2

√
α +β > 0, then the Sobolev-type inequality

∥u∥∞ ≤C
(∫

R

(
|u′(x)|2 +α|u(x)|2

)
dx+β |u(0)|2

) 1
2

holds and its best constant is given by C = (2
√

α −β−)
− 1

2 .

Proof. For the case of β ≥ 0, m(α +βδ0) = m(α) = 2
√

α = 2
√

α −β− holds from Theorems 3.2
and 4.4, since V = α satisfies the condition (4.3).

If β < 0, from Theorem 4.1 with V1 = α +βδ0 and V2 = α , we have

m(α +βδ0)−m(α)≥ inf
u∈H1(R),u̸=0

β |u(0)|2

∥u∥2
∞

= β

(
sup

u∈H1(R),u̸=0

|u(0)|2

∥u∥2
∞

)
= β . (4.6)

On the other hand, setting u0(x) = e−
√

α|x|, we also have

m(α +βδ0)≤ I(u0;α +βδ0) = I(u0;α)+β |u0(0)|2 = m(α)+β . (4.7)

Hence, from (4.6) and (4.7), we obtain m(α +βδ0) = m(α)+β = 2
√

α −β−.

5 Properties of the minimizers

In the following discussion, we will often make the following assumption on the generalized
potential V ∈ X :

V =V0 +V1, V0 ∈ L∞(R), ess inf V0 > 0, V1 ∈ M1(R). (5.1)

We note that the next identity holds under the assumption (5.1),

I(u;V ) = I(u;V0)+V1(u,u) (u ∈ H1(R)). (5.2)

Lemma 5.1. We suppose that V ∈ X satisfies (5.1).

1. There exist C1, C2 > 0 such that the following inequality holds for u ∈ H1(R):

∥u∥2
H1(R) ≤C1I(u;V )+C2∥u∥2

∞. (5.3)

2. I(·;V ) is weakly lower semi-continuous in H1(R).
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Proof. We set α := ess inf V0 > 0. For u ∈ H1(R), using (5.2), we have

min(1,α)∥u∥2
H1(R) ≤

∫
R

(
|u′(x)|2 +α|u(x)|2

)
dx

≤ I(u;V0)

= I(u;V )−V1(u,u)

≤ I(u;V )+ |V1|TV∥u∥2
∞.

Hence, we have the first assertion (5.3) by setting

C1 :=
1

min(1,α)
, C2 :=

|V1|TV

min(1,α)
.

Let us suppose that {un}n∈N ⊂ H1(R) and u ∈ H1(R) satisfy un → u weakly in H1(R) as
n → ∞. Since ess inf V0 > 0, the inner product (·, ·)V0 gives an equivalent topology on H1(R) and
I(u;V0) = (u,u)V0 holds. Therefore, it follows that I(·;V0) is weakly lower semi-continuous in
H1(R), i.e., it holds that

I(u;V0)≤ liminf
n→∞

I(un;V0). (5.4)

Paying attention to the identity (5.2), it is sufficient to show that

lim
n→∞

V1(un,un) =V1(u,u), (5.5)

to prove the second assertion of the lemma.
For any ε > 0, from |V1|TV < ∞, there exists R > 0 such that∫

{|x|≥R}
d|V1| ≤ ε. (5.6)

Since {un}n∈N is bounded in H1(R), from the Rellich-Kondrachov theorem for the compact em-
bedding H1(−R,R) ⊂ C0([−R,R]), there exists a subsequence which uniformly convergent on
[−R,R]. However, the limit function of the uniform convergence coincides with u. As a result, the
whole sequence {un}n∈N converges uniformly to u on [−R,R]. Hence, there exists N ∈N such that

∥un −u∥L∞(−R,R) < ε (n ≥ N). (5.7)

We set B := supn∈N ∥un∥∞ < ∞. It implies ∥u∥∞ ≤ B. Thus, from (5.6) and (5.7), we obtain

∣∣V1(un,un)−V1(u,u)
∣∣= ∣∣∣∣∫R (|un|2 −|u|2

)
dV1

∣∣∣∣
≤
∫
{|x|<R}

|un +u| |un −u| d|V1|+
∫
{|x|≥R}

(
|un|2 + |u|2

)
d|V1|

≤ 2B|V1|TV∥un −u∥L∞(−R,R)+2B2
∫
{|x|≥R}

d|V1|

≤ 2B(|V1|TV +B)ε.

From this estimate, we obtain (5.5) and

I(u;V ) = I(u;V0)+V1(u,u)≤ liminf
n→∞

I(un;V0)+ lim
n→∞

V1(un,un) = liminf
n→∞

I(un;V ).
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Theorem 5.2. We suppose (5.1). Then, for each a ∈ R, there exists ua ∈ Ka such that

I(ua;V ) = min
u∈Ka

I(u;V ), (5.8)

i.e., F(a;V ) is attained as F(a;V ) = I(ua;V ).

Proof. For any fixed a ∈ R, let {ua,n}n∈N ⊂ Ka be a minimizing sequence for I(·;V ) in Ka, i.e.,
limn→∞ I(ua,n;V ) = F(a;V ). From (5.3), {ua,n}n∈N is bounded in H1(R). Replacing {ua,n}n∈N
by a subsequence if necessary, there exists ua ∈ H1(R) such that ua,n weakly converges to ua in
H1(R) as n → ∞. Since ua,n ∈ Ka and Ka is weakly closed, ua ∈ Ka holds. Hence, we obtain (5.8)
as I(ua;V )≤ limn→∞ I(ua,n;V ) = F(a;V ) from the second claim of Lemma 5.1.

Theorem 5.3. We suppose that (5.1) holds with V1 ∈ L1(R), and that ua ∈ Ka satisfies (5.8).
Then, ua(x)> 0 holds for x ∈ R, and, setting J := {x ∈ R; ua(x)< 1}, ua ∈W 2,1(J) and u′′a(x) =
V (x)ua(x) hold for a.e. x ∈ J.

Proof. For ua ∈ Ka which satisfies (5.8), we define J := {x ∈ R; |ua(x)| < 1}, which is an open
set in R since ua is continuous. Then, for any φ ∈C∞

0 (J ), there exists τ > 0 such that ua+ tφ ∈ Ka

for t ∈ (−τ,τ). Since I(ua + tφ;V ) has a local minimum at t = 0, we obtain

0 =
d
dt

I(ua + tφ;V )
∣∣
t=0 = 2

∫
J

(
u′a(x)φ ′(x)+V (x)ua(x)φ(x)

)
dx,

which implies that ua ∈W 2,1(J ) and u′′a(x) =V (x)ua(x) holds for a.e. x ∈ J.
We set ūa(x) := |ua(x)|. Then, since ūa ∈ Ka and I(ūa;V ) = I(ua;V ) = F(a;V ), we have that

ūa ∈W 2,1(J ) and

ū′′a(x) =V (x)ūa(x) (a.e. x ∈ J ). (5.9)

Let J0 be an open component of J. Then,

ūa(x) = 1 (x ∈ J0 \ J0 ̸= /0), (5.10)

from the definition of J.
We assume that ua(x0) = 0 holds at some x0 ∈ J0. Then ūa(x0) = ū′a(x0) = 0 holds, since

ūa ∈C1(J) and ūa(x)≥ 0. From (5.9), for x ∈ J0 ∩ [x0,∞), we have

ūa(x) =
∫ x

x0

ū′a(s)ds ≤
∫ x

x0

|ū′a(s)|ds,

|ū′a(x)|=
∣∣∣∣∫ x

x0

ū′′a(s)ds
∣∣∣∣≤ ∫ x

x0

|V (s)|ūa(s)ds,

Setting v(x) := ūa(x)+ |ū′a(x)|, we have

v(x)≤
∫ x

x0

(1+ |V (s)|)v(s)ds (x ∈ J0 ∩ [x0,∞)). (5.11)

Applying the Gronwall inequality to (5.11), we obtain that v(x)≤ 0 for x ∈ J0 ∩ [x0,∞). Since we
can similarly obtain v(x) ≤ 0 for x ∈ J0 ∩ (−∞,x0] too, v(x) = 0 holds for x ∈ J0. However, this
contradicts (5.10). Hence, we conclude that ua(x) ̸= 0 for x ∈ R. It implies that ua(x) = ūa(x)> 0
for x ∈ R and J = {x ∈ R; ua(x)< 1}.



66 L∞-constrained variational problem with generalized potential

Lemma 5.4. We suppose V ∈ L∞(R)+M1(R) and u ∈ H1(R). Then, it holds that

lim
h→0

I(u(·−h);V ) = I(u;V ). (5.12)

Proof. First, for x, h ∈ R and u ∈ H1(R), we remark that

|u(x)−u(x−h)|=
∣∣∣∣∫ x

x−h
u′(y)dy

∣∣∣∣≤ (∣∣∣∣∫ x

x−h
|u′(y)|2 dy

∣∣∣∣) 1
2

|h|
1
2 ≤ ∥u∥H1(R)|h|

1
2 .

We use the idea in the proof of Proposition 4.2.6 of [7]. For h ∈ R, we set

fh(x) := |u(x)|+ |u(x−h)|− |u(x)−u(x−h)| ≥ 0 (x ∈ R).

Since u is continuous, limh→0 fh(x) = 2|u(x)| holds for x ∈R. Applying Fatou’s lemma, we obtain

2
∫
R
|u(x)|dx ≤ liminf

h→0

∫
R

fh(x)dx

= liminf
h→0

∫
R

(
|u(x)|+ |u(x−h)|− |u(x)−u(x−h)|

)
dx

= 2
∫
R
|u(x)|dx+ liminf

h→0

∫
R

(
−|u(x)−u(x−h)|

)
dx

= 2
∫
R
|u(x)|dx− limsup

h→0

∫
R
|u(x)−u(x−h)|dx.

This implies limsuph→0
∫
R |u(x)−u(x−h)|dx ≤ 0 and also

lim
h→0

∫
R
|u(x)−u(x−h)|dx = 0.

We write V =V0 +V1, where V0 ∈ L∞(R) and V1 ∈ M1(R). Then we have

I(u;V )− I(u(·−h);V ) =V (u,u)−V (u(·−h),u(·−h))

=
∫
R

V0(x)
(
|u(x)|2 −|u(x−h)|2

)
dx+

∫
R

(
|u|2 −|u(·−h)|2

)
dV1.

Hence, we obtain (5.12) from∣∣I(u;V )− I(u(·−h);V )
∣∣≤ 2∥V0∥∞∥u∥∞

∫
R
|u(x)−u(x−h)|dx+2∥u∥∞

∫
R
|u−u(·−h)|d|V1|

≤ 2∥V0∥∞∥u∥∞

∫
R
|u(x)−u(x−h)|dx+2∥u∥∞|V1|TV∥u∥H1(R)|h|

1
2 .

Theorem 5.5. If V ∈ X satisfies (5.1), then F(·;V ) ∈C0(R) holds.

Proof. For a ∈ R and any convergent sequence an → a as n → ∞, from Theorem 5.2, there exist
ua ∈ Ka and uan ∈ Kan such that F(a;V ) = I(ua;V ) and F(an;V ) = I(uan ;V ). We set ũan := ua(·+
a−an) ∈ Kan . Then, F(an;V )≤ I(ũan ;V ) holds. Applying Lemma 5.4, we have

limsup
n→∞

F(an;V )≤ lim
n→∞

I(ũan ;V ) = I(ua;V ) = F(a;V ). (5.13)

In particular, we obtain
sup
n∈N

I(uan ;V ) = sup
n∈N

F(an;V )< ∞.
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Then, from Lemma 5.1, it follows that {uan}n∈N is bounded in H1(R). Therefore, replacing
{an}n∈N by a subsequence if necessary, there exists va ∈ H1(R) such that uan weakly converges to
va in H1(R) as n → ∞. It implies va ∈ Ka and

I(va;V )≤ liminf
n→∞

I(uan ;V ).

Thus, it holds that

F(a;V )≤ I(va;V )≤ liminf
n→∞

I(uan ;V ) = liminf
n→∞

F(an;V )≤ limsup
n→∞

F(an;V )≤ F(a;V ).

Hence, we obtain limn→∞ F(an;V ) = F(a;V ) and conclude that F ∈C0(R).
The following theorem gives a sufficient condition for the trapped mode by a potential well in

terms of the width and depth of the potential well.

Theorem 5.6. Let α,β > 0 and b < c. We suppose that V ∈ L∞(R)⊂ X satisfies V (x)≥ α for a.e.
x ∈ (−∞,b)∪ (c,∞) and V (x) = −β for x ∈ (b,c). If

√
β (c− b) ≥ π , then there exists a ∈ [b,c]

such that F(a;V ) = m(V ).

Remark 5.7. In Theorem 5.6, c−b represents the width of the potential well, and β is the depth
of the potential well. The condition

√
β (c− b) ≥ π gives a sufficient condition for the trapped

mode in terms of the width and depth of the potential well.

Proof of Theorem 5.6. For a ∈ R, from Theorems 5.2 and 5.3, there exists ua ∈ Ka such that
I(ua;V ) = F(a;V ) and ua(x)> 0 for x ∈R. Let a ∈R\ [b,c]. If ua(x)< 1 for x ∈ [b,c], then, from
Theorem 5.3, it has to satisfy u′′a(x)+βua(x) = 0 and

ua(x) =C sin(
√

βx+θ) (x ∈ (b,c)), (5.14)

where C ∈ R and θ ∈ R are some constants. But it is impossible for a function of the form (5.14)
to satisfy the condition 0 < ua(x)< 1 for x ∈ [b,c] if c−b ≥ π/

√
β . Hence, there exists ã ∈ [b,c]

such that ua ∈ Kã holds. Since F(ã;V )≤ I(ua;V ) = F(a;V ), we conclude that

∀a ∈ R\ [b,c], ∃ã ∈ [b,c] s.t. F(ã;V )≤ F(a;V ). (5.15)

Since F(·;V ) ∈C0(R) holds from Theorem 5.5, we obtain

inf
a∈R

F(a;V ) = inf
a∈[b,c]

F(a;V ) = min
a∈[b,c]

F(a;V ).

Therefore, from Theorem 2.1, there exists a ∈ [b,c] such that F(a;V ) = m(V ).
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