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Abstract. It is shown that simply connected smooth m-mainfolds with a certain
homotopy and tangential property are very frequently diffeomorphic mod®,, if they are

tangentially homotopy equivalent.

1. Introduction

Two manifolds M,, M, are called tangentially homotopy equivalent if there exists a
homotopy equivalence /' : M; — M, such that /*(zM,) is stably equivalent to zM/;, where
zM;, ¢ = 1,2, are their tangent bundles. In this paper, we are concerned with closed
smooth m-manifolds M which are simply connected and satisfy the following hypotheses :

(H) M — (a point) has the homotopy type of a bouquet of spheres (Vv ; S5) V (V 7,
S9), where 0<p<gq, p+g=m.

(H;) M is p-parallelizable (that is, M is parallelizable on its p-skeleton of a tria-
ngulation).
We study whether such two manifolds M, M, as above which are tangentially homotopy
equivalent are diffeomorphic mod®,, (that is, M, = M,#Z for some 2 of ®,) or not. We
treat with the following cases :

(A) m=2n+1, p=n n=2, (D) m=2n—2, p=n—3, n=8,
(B) m=2n, p=n—1, n=4, (EY m=2n—-3, p=n—4, n=10,
(C) m=2n-1, p=n—2, n=6, (F) m=2n—4, p=n—>5, n>=12.

Here, g is kept as ¢g=n+1 in every case to advance our argument in a unifying way.
One of the authors showed the following in [25] and partly in [4] and [5] .

*  Present address : 13-38 Osono-cho, Tsu, Mie 514.
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TurorREM 1. Let M,, M, be closed smooth m-manifolds satisfying the hypotheses (H,),
(Hy). In the cases (A), (B), and (C), let My, M, be homotopy equivalent if n+ 1 =£= ()

(mod 4) and tangentially homotopy equivalent if n+1 = 0 (mod 4). Then, M, M,
are dif feomorphic mod ®,,.

In this paper, by a further investigation, we have the following results.

TueoreM 2. Let M,, M, be closed smooth m-manifolds satisfying the hypotheses (H,),
(H,). In the cases (D), (E), and (F), let M,, M, be homotopy equivalent if n+ 1 5= 0
(mod 4) and tangentially homotopy equivalent if n+ 1= 0 (mod 4). Then, M,, M, are
diffeomorphic mod ®,, unless n= 2'— 1 for [= 4 .

Remark. 1f we consider the case p =g, then the maifolds are n-connected and (27 +
2)-dimensional. If M,, M, are nm-connected and (2x+2)-dimensional (z=2), then the
conclusion of Theorem 1 holds also without the hypotheses corresponding to (H;), (H:).
This fact was shown by [14] and partly by [22] , but we can show it also using the
handlebody theory of [23] and studying the homomorphism J @ z{SOus1) = i (S™7).

TueorREM 3. Let n=2'—1 (I=4). Then, in each of the cases (D), (E), and (F),
there exist cevtain closed smooth m-manifolds M., M, satisfying the hypotheses (H,), (H,)
which form a counter example for the conclusion of Theorem 2. Furthermore, if (M', M),

(M”, M) ave such counter examples and rank H,(M)= 1, then M', M" ave diffeomorphic
mod @,

We denote the generators of 7,.5(S™) = Z+ Z(n= 5) by ay{n), v, respectively ([21])
and denote the oriented generator of z,(5™ by ¢,.

Let n=2'—1(/=4). Let B® be the total space of the (n—7+1)-sphere bundle over the
(n+1) -sphere which corresponds to the non-trivial torsion element of z,(SO,_s2) = Z,+
Z, i=4,5,6. In the proof of Theorem 3, it is shown that for i=4,5,and 6, B® is
tangentially homotopy equivalent to S**#!'xS™! but they are not diffeomorphic
mod 8, ;... Here, we note that 7=4,5, and 6 correspond to the cases (D), (£), and
(F) respectively.

On the other hand, it is known that the Whitehead product [vn_z, tn2] =0 for n=2¢—1
(I=3) (Cf. [15], [17] ). Therefore, by Theorem (1.2) and Remarks of [2] , there
exists an exotic (#-1)-sphere Z™*' which can be imbedded in R*"! with non-
trivial normal bundle for n=2'—1(/=4). (In [2] , it was shown that such an exotic sphere

exists for #=15). Then, S*"3*x 2™ is not diffeomorphic to S™*XS*'mod @,,,. In
fact, if S*¥xZ*'=5"2%x S mod®,,_,, we have

Sl §A3  TATL__ = Grm3 s Gy (C Gn-8 y Gl C Ren-l
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Hence, ™' can be imbedded in R?**! with trivial normal bundle, and this yields a
contradiction by Lemma (1.1) of [2] . Since S™%xZ"! is tangentially homotopy equiva-
lent to S™3*x S™! we have an example of Theorem 3 for the case (D). Similar arguments
also hold for the pairs (S7 ¢ X Z™1, S 4 x S™1), (S™8 x 571 78 x S™1) and therefore, the
pairs form the examples of Theorem 3 for the cases (E), (F), respectively. Then, by the
latter half of Theorem 3, S™ ! x 37! is diffeomorphic to B “mod ®,,_,,,” for 1=4,5,
and 6. However, more precisely, we can show that they are just diffeomorphic.

COROLLARY 4. Let n=2'=1(/=4). For such an exotic sphere "' as above, S™ ™' X
2 4s -mot diffeomorphic to ST X S™ mod @y, iy, bul just diffeomorphic to B2, for i=
4,5, and 6.

The proofs of the above results are given in § 4. The proof of Theorem 2 includes that
of Theorem 1, and consequently Theorem 1 is to be proved additionally. In this paper,
manifolds are oriented and homotopy equivalences and diffeomorphisms are orientation
preserving.

The authors wish to thank Professor Y. Nomura and Professor M. Mahowald for
useful informations about the Whitehead product.

2. Handlebodies of type 0

Let W be a handlebody of #(p+q+1, 7, q) 2p>q>1) and let (H ; ¢, ) be the
invariant system defined in [23] which characterizes W up to diffeomorphism. W is
called of #type 0 if the pairing ¢ : H X H — #,(SP*') (H=H,(W)) is trivial. Then, by
Theorem 1 of [23] , the map a : H — 7,1(SO,.) is a homomorphism which takes the
values in 7, (7, ,(SOp)), where i, : 7, 1(SOp) = 74 1(SOpy,) is induced from the inclusion 7 :
SOy = SOpy,. If W is of type 0, then for an arbitrary basis {g, &, -, g,} of H, W can
be represented as a boundary connected sum A, 4 4,4 - § A, up to diffeomorphism, where
each A; is the (p +1) -disk bundle over the g-sphere with the characterstic element a(g;).
(See p. 21 of [6] ).

Henceforth, let W;, W, be handlebodies of #{(p+qg+1, 7, q) 2p>¢>1) and let (H, ; ¢,
), (H, ; ¢, az) be the invariant systems of W;, W, respectively. By Theorem 2 of [23],
we have

THEOREM 2.1. Let Wi, W, be of type 0. Then, W;, W, arve diffeomorphic if and only
if there exists an isomorphism h : H, — H, such that a1 =az0 h.

Let P : 2(S?) — 7prq1(S?) be the homomorphism defined by P(x)= [x, ] , the
Whitehead product with ¢,. We define the homomorphism A : 7, 7 :(SO,) — Jze-1(S0,)/
ImP by 1(i,&)={J&). Wenote that A can be identified with—] | 7, z,_1(S0O,), the restric-
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tion of —J to 7, 7.-1(SO,), under the isomorphism Jz,_,(SO,)/ImP =] (i, 7,-1(SO,)) (¢f. [9]).
Then, by Theorem 1 of [6] , we have

THEOREM 2.2. Let Wi, W, be of type 0 and let p+q. Then, OW:, O W, are homotopy
equivalent if and only if there exists an isomorphism h : Hy — Hy such that Aoa; =20 a;° h.
Here, & may be replaced by the homomorphism J : mq1(SOps1) = 7pio(SPHY).

Remark. In Theorem 2.2, if f : @ W, — 2 W, is a homotopy equivalence, then % can
be taken as 2=(5), of s o (i1)5" , Where (i), : Hy( @ W) = H/W,), k=1,2, are isomorphisms
induced from the inclusions 2, : @ W, — W,, £=1,2. Conversely, if loa;=2A1oa, oh for
some isomorphism % : H, — H,, then there exists a homotopy equivalence f :2 W, —2 W,
such that 2=(3),°f, ©(i)s' . These facts are easily seen from the proof of Theorem 1

of [6] .

CoROLLARY 2.3. Let Wy, W, be of type 0 and let p+q. We assume that J @ ne1(SOps1)
— 75 o(SPTY) s monic on 1, (7, 1(SO,)). Then, Wy, W, are diffeomorphic if and only if
oW, oW, are homotopy equivalent.

By a similar argument of Theorem 9.1 of [4] , we have

THEOREM 2.4. Let Wy, W, be of type 0 and let p+q. If OW,, oW, are diffeomorphic
mod Bpyq, then Wi, W, are diffeomorphic.

The following is easily obtained from Lemma 1.1 of [11] . (Cf. Lemma 9.2 of [4] ).

LemMma 2.5. If q=4t (¢>0), there is a commuiative diagram

H(W) = 7g-1(SOps1)
<P(W), > l | if
z €x 7= 1, 1(SO),

where ©° 1 SOpry — SO is the inclusion map, PAW) is the t-th Pontrjagin class, and
2(2¢t =11 o tis odd,
C = + {
(2t =DV if tis even.

By Lemma 2.5, immediately we have

LEMMA 2.6 Let =4t (t>0), p+q, and let W, W, be of type 0 if p=q—1. If there
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exists a tangential homotopy equivalence f - @ Wy — 8 W, thenifoai =1, olaso h) for the
isomorphism h=(ip), 0 f,o(a)3 : H, — H,.

Here, we should note that (2,), : H.(@ W) — H,(W,) is an isomorphism also for p=¢—1
if W, is of type 0, since ¢, coincides with the intersection number pairing, 2=1, 2.

THEOREM 2.7. Let q=41 (t>0), p+q, and let Wy, Ws be of type 0 if p=qg—1. Assume
that 1§ @ 74-1(SOpy1) = 74-1(SO) is monic when p<q—1. Then, Wy, W, are diffeomorphic
if oW, oW, are tangentially howmolopy equivalent.

Proof. Let f:5W,— oW, be the tangential homotopy equivalence. By Lemma 2.6,

we have ;= a, o b for h=(%), o f, o (7)3}. Here, we note that 7,’ is monic on 7, 7,_,(SO,)

C 7q-1(SOp;1)) when p=g—1 (cf. Table 3 of [25] ). Ifp=¢, Then ¢,, ¢, are trivial by

definition. If p=¢—1, then ¢, ¢, are also trivial by assumption. If p<g—1, then we

have ¢, = ¢, o (hx h) by proposition 1 of [7] . Thus, (H; ; ¢, a) is isomorphic to (F; ; ¢.,
a,), and so W, W, are diffeomorphic by Theorem 2 of [23] .

TueEOREM 2.8. Let Wi, W, be of type 0 and let q=41 (t>0), p+q. If oW, W, are
tangentially homotopy equivalent, then W,, W, arve diffeomorphic under the jfollowing
additional assumptions : For i, : mg1(SOp) = 74-1(SOps1), there exists a divect sum decompo-
sition Imi,=F+T by the torsion subgroup T and a free part F such that i3 : g 1(SOp11)
— 7 (SOY=Z is monic on F and ] © 4 1(SOpy1) = 751 o(SP™Y) is monic on T.

Proof. Let f: @W,— @ W, be a tangential homotopy equivalence. By Theorem 2.2
and the remark, and by Lemma 2.6, we have Joay=Joaoh and i, oay=ioa,0h for
the isomorphism ~=(i), 0 f .o (i); : Hi— H,. Since W,, W, are of type 0, ay, a, take
valuesin Im 7,. Let x€H, ai(x)=a+b, acF, b€ T, andlet (a, o h)(x)=a' + b, a’ =F, b’
&T. Then, i, (@=i; (@a+b)=(; oa)x)=(is o mo h)(x)=i; (& +b)=i; (). Since
i+ is monic on F, we have a=«’. Therefore, 0= (a1 (x)—(az 0 k)x))=](b—5"). Since J is
monic on 7, we have 6=10". Thus, a; (x)=(a, 0 k)(x) for any x& H, and therefore W;, W,
are diffeomorphic by Theorem 2.1.

3. J-homomorphism in the metastable range

As is seen in the previous sections, our main theorems depend heavily on the results on
J-homomorphism. Let J9 : #7,(SOnpo-s)= Toneo—:(S?%%) be the J-homomorphism. The
following is seen in [25] .

ProposiTioN 3.1. (i) If n=+4t—1, then J9, i=1,2,3, are monic.
(i) If n=41t—1, then i : m(SOpnso_ )= m(SO) is monic for i=2, 3, and monic on

14 (ma(SOR) if i=1.
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By studying further, we have the following results.

ProposiTiON 3.2. (i) If n=8s or 8s+2, then J?, {=4, 5, are monic for s>0, and J®
s also monic for s>1.

(ii) If n=8s+1, 8s+4, or 85+5, then J9, =456, are monic for s=0.

(iii) If n=8s+86, then JO, i=456, are monic for s>0.

Proof. For the cases n=38s, 8s+1, the results are already known by Lemma 2.2,

Remark 1, and Lemma 3.2 of [8] . We consider the following diagram which is com-
mutative up to sign :

Z‘(G) Z'(4)

(5)
700 (SOp-s)— 225 24(SOn_s) —— 7(SOn_2) ———s 7(SOp-)

(%) l J® llj(m ]]m J]m
®)

Tona( ST~ e o(S7) B (S B 1 (ST,

where the upper homomorphisms are induced from inclusions of the rotation groups and
the lowers are suspension homomorphisms. Since 7,.,(S™ %) =0 (n>8), mu.(S"*)=0
(n>10), and z,(S™*9)=0 (#>9), ¥ is monic for %>8 and ¢ is an isomorphism for »>10.
We note also that £, E® are monic then. Hence, if J® is monic, then J©, J® are monic
for »n>8, n>10 respectively.

In the following diagram (»>6) which is commutative up to sign

Z'(‘ﬂ
”n(SOn—z) —_— ﬂn(SOn—‘)

8(4)
(s *) &+&:nn+1(5"—2)/ 'J“) e
\ ! ) l
011(%—2), Un-2 P(4) HZn_z(Sn_z)-E—__) ﬂzn_l(sn_l)y

J® is monic if n=4¢—1 by Proposition 3.1. Here, P“= [ , ¢,.,] , @ is the boundary
homomorphism, and a;,(n—2), v,_, denote the corresponding generators. If n=8s+2 or
8s+5 (s>0), then there exist the isomorphisms 7,(SO,-1) = w1 (Vimeniz), =12, by [12] ,
where m is sufficiently large. Therefore, i is precisely known from the results on
homotopy groups of Stiefel manifolds of [18]. Infact,if #=8s+2 (s>0), i : @5 2(SOss)=
Zos+ L= 5= my512(S0ssr1) maps Z; isomorphically onto Z and Z, to zero. If n=
8s+5 (s>0), ¥ : T515(SOhsrs) = 2+ Zy—s Zy+ Zy = mysrs(SOhsis) maps as 79(1,0)=(0,0)
and 7(0,1)=(1,0). Note that @ : (S0 =2,— Z,+ Z,=m(S0,) maps as 19(1)=(1,0)
since SO,=S0; X S°*. In addition, if #=8s5-+4 (s>0), i : 754 e(SOhors)= Zy ——> 2, = mygra(

SOgses) is trivial since there exists the following exact sequence induced from the
canonical fibering :
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Zy544(SOss42) i-> T3 s+4 (SOSS+3) e 77:88+4(SBS+2)_> T s+3(SOhsi2).

l I I I
Zy 2 Z Z

On the other hand, by [20] and [13] , we know that

(24 if n=8s+2 (s>0),
o(Im PW)=< 12 if n=8s+4 (s>0),
2 if n=8s+5 (s>0),

where o(G) denotes the order of a group G. Then, it is easily seen that J* is monic for

§>0, from the diagram (% #*). Only for n=8s-+4 (s>0), we can see it also by the following
diagram which is commutative up to sign :

0= 7u(SOn-s) 55 74(SOp_z) s (S™7)

lf(‘“ | ;JE"—Z

ﬂzn_z(sn_z)_H" 71'271—2(82"“5 )7

where 7z, is induced from the projection and A is the Hopf homomorphism. For the case
s=01in (ii), the assertion holds trivially except J : 7 (SO;)— 7 (S?). However, it must be
monic since i : 7z5(SO0;)— z(SO,) is monic and J® : #(SO,)—n,(S*) by Proposition 3.1.
Let n=8s5+6 (s>0). The homotopy groups of rotation groups in this case are known
by [1] if s>1. If s=1, those are known by [10] , that is, 7,(SOy0)= Z, m4(SOy,) =2,
and 7,,(SO,) =2, + Z,,. We have the following diagram which is commutative up to sign :

(s=1) (s>1)
Z4 Z4
+ o+ (s>0)
Zny iy Z
——
I ) I

Tsr6(SUssr4) %Z* Zsr6(S0ssrs)
@ epi
/ \m: =0

Zut By = myppp (Srevy| RO D mono | 7 Tossa( S5 = 2,

pe ) H

Tr65410(S55T) — Tipgr11 (S8

where 7z, is induced_ from the projection and A is the Hopf homomorphism. Since z, =0
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by (iv) of Lemma 2.2 of [5] , i* is epic for s=0 and therefore 8 is monic for s>1.
Since J® is monic by Proposition 3.1, we have the exact sequence

24 2= menr(S) L 1 o E% 1 o =7z ——0,

Since H [a1(85+4), tssss] = F a1, H [thers, tssrs] = +2v stably by (5.32) of [24] , we know

that o([ a1 (8s+4), tssie]) =3 and o([wssrs, tssrs]) =4 or 8. Here, o(y) denotes the order

of a group element y. If s=1, then we have o(Im J®)<96. Therefore, the above

sequence shows that o([ s, u2])=4 and o(Im J¥)=96. Hence, /¥ ismonicif s=1. Let

s>1. Since o([wst4, tssrs)) =8 by Table 2 of [16] , the above sequence shows that

o(Im J®)=192 and therefore /® is monic. Thus, J* is monic for n=8s+6 (s>0).
Since J©®, J© follow J“, this completes the proof.

ProrosiTion 3.3. If n=4t—1 (¢=3), there exist the divect sum decompositions
T(SOnio- ) =2+ Z, i=4,5,6, for which we have

(i) 75 : mwSOnis— )= 7, (SO) is monic on the free part for i=4,506.

(ii) If n=8s+3(s>0), then J9,i=4,5,6, are monic on the respective torsion subgroups.

(iii) If n=8s+7(s>0), then, on the respective torsion subgroups, J?, 1=45,6, are
monic if s*2'—1 and arve all trivial if s=2'—1.

Proof. (i) will come to be clear in proving (ii) and (iii) by (ii) of Proposition 3.1.
(ii) By [12] , we have the exact sequence

0-— '7"-'8s+4( Vm,m—ss— i) B 7zs.9+3(5088+ i) — 7[88+3(50m): Z—>O,
for s=2, iz—2 or s=1, 120, where m is sufficiently large. Hence, by [18] we know
the following correspondence of the noted generators :

7® ;6

;(4)
7[88+3(SOBS—1)—> 758s+3(SOss)——> Tas+3(S0ss41) :

— 7ZSS+3(SOBS+2)7

I I I I

Z, & Z L %
+ + +
Z 2z Z 4 Z % Z w

where each generator is mapped horizontally to a generator and the one with no corre-
sponding generator is mapped to zero. If s>1, we take z, so that ¢ (z,) =7, the generator
of m5:3(SO)=Z. Then, the unique element z and z will determine the other generators.
If s=1, we take 3, so that 75 (,)=7. Since 7® is an isomorphism even if s=1, we choose
2, 2 so that i®(z)=y, which is the unique non-trivial torsion element of ,(S0;s) and
®(z)=1y. The other generators are determined canonically.

By [20] or [13] ,itis known that [v,_s, tn_s]#0 if z=8s+3 (s>0). Hence, by the
diagram (%) J“ is monic on the torsion subgroup, and therefore J©, J® by the dia-
gram( k).

(iii) By [12] , we have the exact sequence
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0-— Tsrs( Vimogs—i) — 7g547(SOs4 1) —> cZ(C Z = T 547(SOp)) —> 0 .

for s=1,.=3. Here, m is sufficiently large, ¢=2 if s=1, i=34, and ¢=1 otherwise.
Hence, by [18] we know the following correspondence of the noted generators :

6 Ho) ;@
7st+7(SOss+3) —> 778s+7(SOgs+4) E— 7fss+7(SOss+5) — Ty547(S0ssts),
I l I I
Y/ Z » Z X
+ - +
xX2(s=1
Z 2z Z —(—L Z x 7 w

where each generator is mapped in a way similar to the above except the indicated one. If
s>1, we take z, so that i$ (z)=7, the generator of ms.,(SO)=Z. Then, the unique
element z; and z, will determine the other generators. If s=1, we can take z,, x so that
15 (2)=27, i (x)=7. Then, with the unique element z;, they will determine the other
generators. Here, i®(3)=2x% or % +2%. If {9(%n)=x +2x, we replace z, » by 2" =2z +
2, %' =3+, respectively. Then, we have ®(3,")=2x,. Thus, the above correspondence
are obtained.

On the other hand, [wsis, Lssrs ] =0 if s#2¢—1 by [20] or [13] and [wers, tssss] =0 if
s=2'—1 by [15] and [17] . Hence, we have the result using the diagrams (), ( *)
similarly, where we must note that E®, E® are monic.

This completes the proof.

4. Proof of main theorems

Let M be a closed smooth m-manifold which is simply connected and statisfies the
hypotheses (H,), (H,) in § 1. Then, by a set of surgeries of the generators of H,(M), M can
be modified to a homotopy m-sphere = (cf. Theorem 6.3 of [3] ). Therefore, by
constructing conversely, M # (-2) is thé boundary of a handlebody We & (m +1, 7, ¢) and
hence M =8 W #3, where g=m—p and »= rank H,(M). We can show that W is of
type 0. In fact, if p=¢—1, it follows from the homology exact sequence of (W, & W)

0——H(8 W) —— HAW) —15 HW, 9W) —— Hor (3 W)—— 0.

Because, since H(W, a W)=HYW)=Hom (H(W), Z) and H,_ (W)= H,(M), we have
rank H(W, @ W)=rank H, ,(d W)=7. So, j, must be trivial. Since j, can be represented
by the matrix representation of the intersection number pairing which coincides with ¢,

¢ must be trivial. Let p<¢g—1and 2p>¢. By Lemma 1.1 of [7] , 8W — % has
the homotopy type of X= (Vi1 S Ui (Uk: D), where A, =37, 1;, as an

element of (Vi S2)= 20, 7,1(S2)and Ay, 4, j=12,--1, are linking elements if

i+j and self-linking elements if /=j From the hypothesis (H;), @W — % has also
the homotopy type of X' =(Vvi, S2)V (VE, SZ). Hence, every A; must be trivial. In fact,
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there exists a homotopy equivalence f : X—X’ and it may be assumed that f(\v &, S2)C

VL S Let F: (X, Vi S2) =(X', \v L, S%) be the map defined by £ Then, we have
the following commutative diagram :

f
Hy(X) ~ H/(X)
HyX, VL, S?)  H(X', V1,SP)
(X, Vi, S%) 7 X', /1= S%)
9 9’
IV S2), v

7l'q—1(\/ = Sf ) f7fq—1(\/3zl Sf ),

where (X, VL, S?), (X', v, S2) are (g—1)-connected and p, ¢>1 from assumption.
Since f, is an isomorphism, the two f, are isomorphisms. Therefore, (f | V1, S2), is
also an isomorphism by applying the five lemma to the homotopy exact sequences of the
pairs (X, VI, S2), (X', VL, S2). Then, by the diagram, each 1, must be trivial since 3’
is trivial. Let {e,e,-::,¢,} be the basis of H, (W) determined by the handles. Then
dle,e)=FEN; (i+7) and ¢ (e,e)=FEn,a(e)=EL; by Lemma 7 and Lemma 3 of [23] .
Hence ¢ =0, and therefore, W is of type 0.

Proof of Theorems 1,2. M, M, are respectively the boundaries (mod @,) of hand-
lebodies Wi, W, of #(m+1, », q¢) which are of type 0. In the cases (A), (B), ---, and (F),
J 2 7 1(SOpi1)— mps o SPHY) corresponds to J®, J@, --- and J©, respectively. Let n+4¢—1.
Then, /¥, i1=1, 2,3, are monic from Proposition 3.1, and J, i=4,5,6, are also monic
from Proposition 3.2. Hence, by Corollary 2.3, M,, M, are diffeomorphic mod®,,. Let
n=4¢—1. Then, by (ii) of Proposition 3.1 and Theorem 2.7, M,, M, are diffeomorphic
mod @, for the cases (4), (B), and (C). By Proposition 3.3 and Theorem 2.8, M;, M, are
also diffeomorphic mod ®,, for the cases (D), (E), and (F'), under the hypothesis s+2'—1
when #=28s+7, that is, n+2'—1(/=4). We note that summing a homotopy sphere to a
manifold does not affect its tangent bundle (cf. Theorem 2 of [19] ).

Proof of Theovem 3. Let n=2'—1(/=4). Then, each torsion subgroup of 7,(SO,.s-),
1=4, 5, 6, which is isomorphic to 7, is incuded in Ker J by (iii) of Proposition 3.3. Let
FD be the S™'~7-bundle over S™! which corresponds to such an element b; of order 2 of
Ker J® i=4,5, 6. Then, 2, i=4,5,6, admit cross-sections. This is clear since b,=®(bs),
bs=19(bs), and we have the exact sequence
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”n(SO _5)——> 715;;(50;1-4)_'—’ ”n(sn_s) =0 (n=12)

induced from the canonical fibering. Every b; is sent to zero by 7,5 since ms.,(SO)= Z.
Let Z9be the (n+2—17)-disk bundle over S™! associated to #?,i=4, 5, 6, and let B, 52
be the total spaces of &, #, respectively. Then, it is seen easily that B?, i=4, 5, 6, are
parallelizable and therefore BY, {=4, 5, 6, are z-manifolds. Thus, we have a pair of
7-manifolds B®, S*1-ix S™! for each i=4, 5, and 6. They are homotopy equivalent by
Theorem 2.2 since J¥(b,)=0, and hence tangentially homotopy equivalent since they are
z-manifolds. However, they are not diffeomorphic even modulo homotopy #z-spheres.
Because, B?, Dn+2-ix S7*! gre considered as handlebodies of type 0 of #(m+1, 1, n+1)
with the boundaries B, S™1-ix S™1 respectively. Let «, @ be the homomorphisms
belonging to the invariant systems of B?, D™*2-%x S™*! respectively. Then,  #0 and o’ =0,
and hence they are not diffeomorphic by Theorem 2.1. Furthermore, Theorem 2.4 shows
that B@, S*2-ix S™1 can not be diffeomorphic mod ®,,. Generally, the following pair of
M, M, forms such an example as above for =4, 5, 6 and for any »=1 :

r—1
MIZB(i) # Sn+1—i><Sn+1 # #Sn+1—z‘><Sn+1’
s
Mzzsn+1—i><5‘n+1 # # SQnrl=ine Qnl

The proof of the latter half of Theorem 3 is given as follows. Let M = 0 W (mod ®,,),
M’ = 3 W ' (mod®,), where W, W' e (m+1, 1, n+1) and they are of type 0. Let (H ; @),
(H' ; ') be the invariant systems of W, W' respectively. Assume that M, M’ are
tangentially homotopy equivalent but they are not diffeomorphic mod®,,, where n=2'—
1(/=4). Then, by Lemma 2.6, we have an isomorphism /% : H— H’ which satisfies (i o
a)e)=(s oa’) h(e)). Here, e is the basis element of H(rankH =1). Let a(e)=b-+a,
a’(Me))=b"+a , where b, b’ are torsion elements, @, ¢ are elements of the free part, and
al(e), a’(h(e)) belong to 7, (SOps_) =24+ Z, i=4,5,6. By the above equality, we know that
i (@)=1if (a(e)=1i5(a’(Me))=1; (a') and hence a=a’ since ¢ is monic on the free part
by Proposition 3.3. 5, b belong to the torsion subgroup which is isomorphic to Z,, and
therefore 6'=5b or b'=0-+0b;. If b'’=0, then a(e)=a’(A(e)) and therefore W, W' are
diffeomorphic by Theorem 2.1. So, M =M’ mod®,, and this is a contradiction. Hence,
b’ =b+b; and we have o' (h(e))=a(e)+ b;. Let M”"= 20 W”(mod®,), where W"” belongs to
F(m+1,1, n+1) and is of type 0, and let (H” ; &”) be the invariant system of W”. If (M”,
M) is such a pair as (M’, M), then, similarly as the above, there exists an isomorphism g :
H—H” such that a”(g(e))=a(e)+b;,. Therefore, a’(h(e))=a"(g(e)) for the basis {e} of
H. Hence, o’ ch=a"og, thatis, a’=a”o(go k™). Thus, W', W” are diffeomorphic
by Theorem 2.1, and therefore M’, M” are diffeomorphic mod ®,. This completes the
proof.

Proof of Corollary 4. In the proof of the latter half of Theorem 3, we note that if M,
M"” are just the boundaries of W', W " respectively, then M’ M" are diffeomorphic. We
have known that S™*x 3! and B are respectively tangentially homotopy equivalent to
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S7=3x S™1 but neither of them is diffeomorphic to S**X S mod ®,,_,. We note that
BW= 9fF®, Srix3smi=g(D"tx3™Y) and D" 2x3"! can be considered as a handle-
body of &% (2n—1, 1, n+1). In fact, represent the homology class (% xXZ"!) by an
imbedded (#z+1)-sphere in D" ?x2™Y(»n=8) and take the tubular neighbourhood N with
boundary. Then, it is clear from the Z-cobordism theorem that D" 2 x 2! is diffeomor-
phic to N, which can be considered as a handlebody of & (27—1, 1, n+1). Clearly, B and
N are of type 0. Thus, S™3x 37! is just diffeomophic to B®, Similar arguments also
hold for B®, §"*x 2" and for B®, S*°x 31 This completes the proof.
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