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Abstract We introduce a new simple numerical scheme for a Hele-Shaw-type problem
with a general non-homogeneous free boundary velocity coefficient. The scheme is formally
derived as the large conductivity limit of the scheme introduced by [Berger-Brezis-Rogers,
1979] for the Stefan problem. Using numerical experiments, we compare the performance
of the scheme to that of a state-of-the-art first-order level set method. We demonstrate a
first order accuracy of the new scheme, and that the error in the free boundary position is
comparable to that of the level set method, particularly in solutions with a complicated free
boundary.

Keywords. Hele-Shaw problem, numerical scheme, level set method.

1 Introduction

We consider the following Hele-Shaw-type problem and study the performance of a new simple
discrete scheme inspired by the scheme proposed by Berger, Brezis and Rogers [2] for Stefan-type
problems. Let K represent a nonempty compact subset of Rn with a smooth boundary ∂K, and let
Ω0 ⊂ Rn be a bounded open set with a C2-smooth boundary, where K ⊂ Ω0. We are looking for
the evolving family of sets t 7→ Ωt ⊂Rn, with initial condition Ω0, whose outer normal velocity is
given as

V (x, t) = g(x, t)|Dv|(x, t), x ∈ ∂Ωt , t > 0, (1.1a)

with given positive Lipschitz continuous g = g(x, t), where v(·, t) : Rn → [0,∞), t ≥ 0, is the
solution of the Laplace equation 

∆v(·, t) = 0 in Ωt \K,

v(·, t) = 1 on ∂K,

v(·, t) = 0 on ∂Ωt .

(1.1b)
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The spatial gradient Dv on ∂Ωt is understood as the limit from Ωt . We note that since ∂Ωt is the
level set of v, we have |Dv(x, t)|=

∣∣∣ ∂v
∂ν

(x, t)
∣∣∣, where ν is the unit outer normal to Ωt . See Figure 1

for an illustration. The well-posedness of viscosity solutions of (1.1), if K and Ω0 are star-shaped,
was established in [20].

As a model of the flow in the Hele-Shaw cell in two dimensions [6], Ωt represents the region
filled with fluid at time t, which is injected through K in such a way that the pressure v is kept
constant 1 on ∂K. The surface of the fluid ∂Ωt is assumed to have zero pressure, as any surface
tension effects are neglected. The coefficient 1/g might be interpreted as the thickness of the gap
in the Hele-Shaw cell that needs to be filled. More general boundary conditions can be assumed
on ∂K, but we use the constant Dirichlet boundary condition for simplicity.

K ∂KΩ0∂Ω0

∂Ωt

v(·, t)> 0
v(·, t) = 0

ν

Figure 1: Hele-Shaw problem in a plane.

In this paper we introduce a simple discrete scheme for the above Hele-Shaw problem based
on the scheme proposed by Berger, Brezis and Rogers [2] for Stefan-type problems (see also
[15, 18]): Choosing a time step τ > 0 and a regularization parameter γ > 0, we find the sequence
of wk : Rn → R, k = 0,1, . . ., which approximates Ωtk ≈

{
wk ≥ 0

}
at tk := kτ , as

wk =

− 1
g(·,0)1Rn\Ω0 , k = 0,

min(wk−1,0)+
(

γuk − 1
g(·,tk) +

1
g(·,tk−1)

)
1{wk−1<0}, k ≥ 1,

(1.2a)

where uk solves 
γ1{wk−1<0}uk − τ∆uk = max(wk−1,0) in Rn \K,

uk = 1 on ∂K,

uk → 0 as |x| → ∞.

(1.2b)

Here 1A(x) := 1 for x ∈ A, and 0 otherwise. For the formal derivation, see Section 2. Our goal is
to demonstrate its performance and numerically estimate the error, in particular in comparison to
a basic first-order level set method scheme.

We refer to scheme (1.2) as the BBR scheme. Its main advantage is that it is particularly
simple to implement, and automatically handles topological changes of the interface ∂Ωt . Unlike
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other traditional numerical approaches to (1.1) like the level set method (see Section 3), the linear
Poisson equation (1.2b) is posed on the fixed domain Rn \K and there is no need to explicitly find
|Dv| or V . Furthermore, the original scheme in [2] for the Stefan problem is known to be stable
for sufficiently small τ , and this appears to be also the case for (1.2).

The scheme (1.2) also conserves mass. Indeed, assuming that g = g(x) is independent of
t, noting that wk−1 = min(wk−1,0) +max(wk−1,0) and integrating (1.2a) over U \K for some
smooth open set U ⊃ K, we get∫

U\K
wk =

∫
U\K

wk−1 + τ

∫
U\K

∆uk

=
∫

U\K
wk−1 − τ

∫
∂K

∂uk

∂ν
dS+ τ

∫
∂U

∂uk

∂ν
dS,

where ν is the outer unit normal to U and K. Since uk is nonnegative by the maximum principle
and decays exponentially away from

{
wk−1 ≥ 0

}
, if U is sufficiently large we can neglect the

integral over ∂U and we get the conservation law∫
U\K

wk ≈
∫

U\K
wk−1 − τ

∫
∂K

∂uk

∂ν
dS. (1.3)

This is particularly useful if a Neumann boundary condition for v and hence uk on ∂K is consid-
ered.

However, since wk in general has a jump at ∂
{

wk−1 ≥ 0
}

, it is not possible to determine the
boundary position to a subgrid precision with an interpolation like in the case of the level set
method, so we expect the scheme (1.2) to be less accurate by a constant factor compared to a
first-order level set method. This is indeed what we observe, see Section 4.

Our main motivation for considering scheme (1.2) is the numerical study of the homogeniza-
tion of the Hele-Shaw problem (1.1) when g is periodic both in x and t and cannot be decomposed
into a product of functions of x and t. When g is rescaled as g(x/ε, t/ε), in the homogenization
limit ε → 0 the solution converges to a Hele-Shaw-type problem with V depending only on Dv,
see [20, 18] for details. However, there is no explicit formula for the homogenized velocity, and a
numerical method is needed to approximate it. In this context, since the error of the approximation
will be dominated by the averaging error, it is sufficient to consider a first-order accurate scheme
like (1.2). Moreover, the mass conservation (1.3) is a desirable feature guaranteeing that mass is
not lost even over large time scales when g is independent of t (and at least approximately when g
depends on t). This should lead to a more robust estimate of the homogenized velocity.

In the previous work of one of the authors [18], the BBR scheme for the Stefan problem with
large conductivity, approximating the Hele-Shaw problem, was used instead of (1.2) to estimate
the homogenized velocity. However, even large finite conductivity introduces a noticeable system-
atic error to the estimate of the average velocity. In an upcoming paper, we apply the BBR scheme
(1.2) to estimate the homogenization velocity.

Let us point out that if the velocity coefficient g in (1.2a) can be written as g(x, t) = X(x)T (t),
then by a change of variables in t, the problem (1.1) can be reduced to the problem with g(x, t) =
g(x) = X(x). Furthermore, using the standard transform [1, 3] we define

u(x, t) =
∫ t

0
v(x,s)ds.

Surprisingly u(·, t) is a solution of an elliptic variational inequality that can be solved at each t > 0
completely independently from the previous states t ′ < t, see [19] for details. And since the free
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boundary evolution is monotone, {v(·, t)> 0} = {u(·, t)> 0}. Many publications on the Hele-
Shaw problem rely on such transformation and therefore they can be applied only in the special
case g(x, t) = X(x)T (t). However, for general g = g(x, t) this transformation does not lead to a
time-independent problem and hence in particular a time-stepping scheme like (1.2) is necessary.

A large number of numerical methods for various versions of the Hele-Shaw problem have been
proposed, including level set methods, boundary integral methods, parametric interface methods,
etc. We refer the reader to a review paper [14] for an extensive list of references. Here we give
a few selected ones. For level set methods, introduced for the mean curvature flow by Osher and
Sethian [16], see for example [7, 9]. The main advantage of the level set method is its ability
to implicitly handle topological changes of the free boundary in any dimension. Higher order
methods are available, and they are necessary if the free boundary velocity includes the curvature
of the interface, representing the surface tension; see the review paper [4]. Unfortunately, the level
set method does not automatically satisfy the mass conservation property. In particular, a special
care needs to be taken during reinitialization of the level set function; see Section 3.5. For a
recent example of a parametric boundary method that solves the Laplace equation using a method
of fundamental solutions, see [22]. For a boundary integral method see [8]. However, the latter
two approaches seem to be limited to two dimensions and handling topological changes might
be challenging. Finally, for an application of the JKO scheme to the Hele-Shaw problem, see
[11]. Although many different numerical methods have been used, to the best of our knowledge,
the current paper is the first time the BBR scheme (1.2) has been proposed for the Hele-Shaw
problem.

We conclude the introduction with the outline of the paper. In Section 2, we formally derive the
BBR scheme (1.2) as the large conductivity limit of the scheme for the Stefan problem. A simple
first-order level set method that we compare the scheme against is briefly described in Section 3,
based on [4]. The settings and results of numerical experiments are presented in Section 4. We
observe that the scheme (1.2) appears to be first order accurate, with a similar error as the level set
method in solutions with complicated interface and topological changes.
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2 BBR-Like Numerical Scheme for the Hele-Shaw Problem

In this section, we derive the proposed scheme (1.2) as a formal large conductivity limit of the
Berger-Brezis-Rogers scheme [2] for the Stefan problem. In this limit the solutions of the Stefan
problem converge to that of the Hele-Shaw problem.

The Stefan problem with free boundary velocity matching that of (1.1) and conductivity 1/λ

is 
λut −∆u = 0 in {u > 0},

V = g(x, t)|∇u| on ∂{u > 0},
u(·, t) = 1 on ∂K,

u(·,0) = u0.
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It is well-known that in the limit λ → 0 the solutions of the Stefan problem converge to the solution
of the Hele-Shaw problem. The Stefan problem can be rewritten in an enthalpy formulation,

λ zt −∆β (z) =−
(

∂

∂ t
1
g

)
1{z<0} in Rn \K,

β (z) = 1 on ∂K,

z(·,0) = u01{u0>0}−
1

λg(·,0)1{u0≤0}.

(2.1)

Here, β (z) := z+ := max(z,0) is the positive part of z. See [18] for more details.
Given a timestep τ > 0, the Berger-Brezis-Rogers [2] time discretization of (2.1) reads

zk = zk−1 +µ
k−1(uk −β (zk−1))−

(
1

λg(·, tk)
− 1

λg(·, tk−1)

)
1{zk−1<0}, (2.2a)

for k = 1,2, . . ., with z0 given by the initial condition in (2.1), where uk solves
λ µ

k−1uk − τ∆uk = λ µ
k−1

β (zk−1) in Rn \K,

uk = 1 on ∂K,

|uk| → 0 as |x| → ∞,

(2.2b)

and

µ
k−1(x) :=

1
δ +β ′(zk−1(x))

. (2.2c)

Here β ′ is the derivative of β that is defined as 1 at 0. The small regularization parameter δ > 0
determines the width of the transition layer of uk near ∂

{
zk−1 ≥ 0

}
, where uk decays exponentially

to 0. Based on a simple one-dimensional calculation, see [18], the half-width is proportional to√
δτ

λ
.

We fix τ > 0 and consider the formal limit λ → 0 for zk and uk in the scheme (2.2) of the Stefan
problem. To keep the boundary layer thickness constant, we set δ = λ/γ for a fixed parameter
γ > 0 so that δ → 0 as λ → 0. Since zk scales as λ−1, we rewrite (2.2a) in terms of zk = λ−1wk,
multiply by λ and use the positive homogeneity of β , to get

wk = wk−1 +λ µ
k−1uk −µ

k−1
β (wk−1)−

(
1

g(·, tk)
− 1

g(·, tk−1)

)
1{wk−1<0}.

Similarly, the right-hand side of (2.2b) becomes µk−1β (wk−1), and

λ µ
k−1(x) =

λ

δ +β ′(wk−1(x))
.

In the limit λ → 0, at least formally assuming that wk−1 converges to a limit that we still denote
by wk−1, we obtain

λ µ
k−1(x)→

{
γ, wk−1(x)< 0

0, wk−1(x)≥ 0

}
= γ1{wk−1<0}(x).

Similarly, since δ = λ/γ → 0, we see that

µ
k−1

β (wk−1) =
β (wk−1)

δ +β ′(wk−1)
=

β (wk−1)

δ +1
→ β (wk−1) as λ → 0.



136 A simple thresholding-like numerical scheme for a Hele-Shaw-type problem

Noting that wk−1 − β (wk−1) = min(wk−1,0), we formally recover the scheme (1.2) in the limit
λ → 0.

The proof of convergence of the time-discrete scheme (1.2) to the solution of the Hele-Shaw
problem (1.1), and hence a justification of the above formal limit, is a subject of an ongoing
research. In this paper we give a numerical verification of the convergence. To the best of our
knowledge, the level set method for free boundary problems like the Hele-Shaw problem also
does not have a known convergence proof, and only numerical verification similar to the current
paper is in general available, see [4]. However, due to the simplicity of the proposed BBR scheme,
and similarity to the scheme in [2], a convergence proof is feasible. In particular, the solution is
monotone so comparison-type arguments should be available. One difficulty is that the generalized
solution theory for the Hele-Shaw-type problem (1.1), due to the time dependence of g = g(x, t),
is rather restricted and relies on the theory of viscosity solutions.

2.1 Spatial discretization of the BBR scheme

At each time step, the PDE (1.2b) needs to be solved on a fixed unbounded domain Rn \K. How-
ever, the solution uk decays exponentially away from

{
wk−1 ≥ 0

}
. Indeed, in the set

{
wk−1 < 0

}
the equation (1.2b) reduces to γu−τ∆u= 0. If u depends only on, say x1, we have u=C exp(−

√
γ/τx1).

By comparison with such one-dimensional barriers outside of a sufficiently large ball containing{
wk−1 ≥ 0

}
, we see that uk ≈ 0 sufficiently far from

{
wk−1 ≥ 0

}
. The required distance is pro-

portional to the half-width
√

τ/γ . This allows us to solve the problem on a bounded domain with
zero Dirichlet boundary condition on the outer boundary.

For simplicity, we discretize the BBR scheme (1.2) on a square domain Q := (0,1)n with
uniform grid G := hZn ∩Q with h = 1/N for given resolution N ∈ N. The Dirichlet boundary
condition uk = 0 is imposed on ∂Q.

The update of wk in (1.2a) can be trivially performed at each node once the approximate solu-
tion uk is known.

For the spatial discretization of equation (1.2b) we use the standard second-order central finite
difference scheme. To handle the boundary of K, we use the extrapolation method discussed in
Section 3.1, which yields a linear system with a symmetric matrix that can be solved efficiently by
the CG method with a multigrid preconditioner. See Section 3.1 for details.

2.2 Choice of the regularization parameter γ .

In the following part, we give a motivation for a reasonable choice of γ , based on a 1D consider-
ation. The behavior of the solution of the spatial discretization in

{
wk−1 < 0

}
can be understood

similarly to the above discussion of the original problem. In one dimension, the finite difference
discretization of (1.2b) reads in

{
wk−1 < 0

}
as

γv j −
τ

h2 (v j−1 −2v j + v j+1) = 0.

Assuming v j → 0 as j → ∞, the solution is of the form v j =Cθ j with

θ = 1− c

√
1+

c2

4
+

c2

2
∈ (0,1),

where c = h
√

γ/τ .
In an upcoming paper, we perform an analysis of the behavior of the discretized problem in one

dimension, deriving sharp bounds on the error in the position of the free boundary. Let us give a
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brief summary of the 1D error estimate. Considering a simple 1D setting where the free boundary

is a single point, and assuming that wk ≡ −z < 0 in
{

wk < 0
}

and that
vk

j−vk
j−1

h = q in
{

wk > 0
}

,
we set η = qτ

zh . Note that V = q
z in this case. Then the error ek of the position of the free boundary

can be estimated as

θ 1−⌈η⌉

1−θ
−⌈η⌉ ≤ ek

h
≤ θ−⌊η⌋

1−θ
−⌊η⌋ , for k large. (2.3)

Here ⌊η⌋ and ⌈η⌉ are respectively the floor and ceiling of η (the largest integer below resp. the
smallest integer above η). See Figure 2 for a graph of the left- and right-hand sides.

Intuitively, η = qτ

zh = V τ

h expresses how many nodes the free boundary of the exact solution
moves per time step. In the BBR scheme, the boundary is advanced by updating wk using γuk in
(1.2a), and therefore the decay of γuk, and after spatial discretization of γvk

j = Cθ j, determines
how far from the free boundary this can occur. Therefore if η < 1, even small θ allows the update
in the node neighboring the free boundary, but if η ≫ 1 we need to take θ near 1 to update wk

sufficiently far away from the free boundary. Therefore the left-hand side of the error estimate
(2.3) blows up near θ = 0 if η > 1. Unfortunately, θ near 1 also causes a large error since a lot of
energy is spread over a thick boundary layer, instead of advancing the interface.

The scheme has the smallest theoretical error if η = qh
zτ

< 1, which acts as a “stability” re-
striction. We therefore choose τ

h for given g so that qmax(g) τ

h < 1 for typical values q = |Du| at
the free boundary. See Figure 2 for an illustration of the error behavior if τ

h is chosen too large.
Unfortunately, it is not possible to control |Du| near topological changes, as the gradient blows
up when a bubble closes. Inspecting the error estimate (2.3) and Figure 2, it seems desirable to
choose θ = 0.5 since then the error lower bound does not worsen catastrophically when η < 1 is
violated. Then we have

γ =
τ

c2h2 with c =

√
θ

1−θ
=
√

2. (2.4)

We provide an illustration of the error sensitivity on the choice of θ in two dimensions in
Figure 2. We use the same parameters as in Section 4 with g = g1 ≡ 1.

With θ = 0.5, the value of the discrete solution away from
{

wk−1 ≥ 0
}

is expected to decay
by a factor θ 10 ≈ 10−3 every 10 nodes. This justifies a zero Dirichlet boundary condition on the
outer computational boundary ∂Q as long as the set

{
wk−1 ≥ 0

}
stays at a distance at least, for

example, 20h from ∂Q. We enforce this in the numerical experiments in Section 4.
Let us point out that we choose a fixed θ . Therefore the discrete solution v j does not converge

to the exact solution of (1.2b) as h,τ → 0. Interestingly, the 1D error estimate (2.3) does not
require the numerical solution v j to approximate uk as h → 0 for the error to be O(h). This appears
to be also the case in two dimensions. Indeed, the accuracy of the approximation

{
wk−1 ≥ 0

}
of

Ωtk does not seem to be impacted, as we demonstrate in the numerical experiments.

3 The Level Set Method

The level set method, introduced by Osher and Sethian [16], implicitly characterizes the family
{Ωt}t≥0 as the sublevel sets {x ∈ Rn : φ(·, t)< 0} of an auxiliary function φ = φ(x, t), referred to
as the level set function. The outer normal velocity of ∂Ωt can be expressed using φ as

V (x, t) =− φt

|Dφ |(x, t), x ∈ ∂Ωt .
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Figure 2: An illustration of the sensitivity of the free boundary error in n = 2 with Hele-Shaw
coefficient g = g1 ≡ 1 and N = 256, for various values of θ and two values τ

h = 1
8 and τ

h = 2. The
errors of a numerical solution (•) are estimated in the setting explained in Section 4. The error
upper bound (right-hand side in (2.3); solid line) with η < 1 and η ∈ (2,3) is also plotted. The
lower bound (left-hand side in (2.3); dotted line) is plotted only with η ∈ (2,3).

The normal velocity V is then given by geometric evolution law like (1.1a). The key idea is to
extend V given by (1.1a) from ∂Ωt to the whole domain and then we can find φ as a solution of
the equation

φt +V |Dφ |= 0, on Rn × (0,∞). (3.1)

The extension of V from ∂Ωt can be for example done as the solution of the equation{
Dφ(·, t) ·DV (·, t) = 0, Rn \∂Ωt ,

V (x, t) = g(x, t)|Dv|(x, t), x ∈ ∂Ωt ,
(3.2)

so that V is constant along the streamlines of Dφ . This choice preserves the slope of φ in the
direction normal to the level set. For more details, see [17, 4].

We use a simple first-order discretization of the level set method, essentially following [4], on
a space domain Q = (0,1)n for simplicity. We believe that the only non-standard modification is
the simplified initialization of the fast sweeping method in Section 3.5. Given a space resolution
N ∈N, we define the spatial mesh step h = 1/N and consider the uniform space grid G := Q∩hZn

with (N + 1)n nodes. This is the same setting as in Section 2.1 for the BBR scheme (1.2). The
(N −1)d interior grid nodes are defined as G0 := Q∩hZn. We also choose a time step τ > 0 and
define the time steps tk := kτ . We construct the sequence φ k : G →R, k = 0,1, . . ., whose sublevel
sets approximate Ωtk . At each time step k = 0,1, . . . we perform the following standard substeps:

(1) Approximate the solution of the Laplace equation v in Ωtk \K.

(2) Approximate |Dv| near ∂Ωtk and find the normal velocity on ∂Ωtk .
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(3) Extend the normal velocity to the domain Q using (3.2).

(4) Update φ k → φ k+1 using (3.1).

(5) Adjust φ k+1 if necessary.

Let us briefly explain the above steps in more detail.

3.1 Discretization of the Laplace equation

The Laplace equation (1.1b) for v needs to be solved in a moving domain, given approximately by
φ k, so that the gradient at the boundary can be approximated with O(h) accuracy. There are many
approaches for this in the literature, but we use the second order discretization proposed in [5].
O(h2) convergence of this scheme in the maximum norm is established in [24]. This method relies
on the standard central difference 5-point stencil for the Laplacian on a uniform grid, with a linear
extrapolation through the boundary into “ghost” nodes that are outside of the domain. This can be
done along each axis independently and therefore can be easily implemented in any dimension.

Let us briefly explain the scheme that results from the extrapolation procedure and its accuracy.
Recall that for given h = 1/N, we consider the uniform grid G := Q∩hZn. Suppose that we have
a discrete level set function φ : G → R. The points in Gφ := G∩{φ < 0} are the interior nodes.
We index them by indices in an index set I0, so that Gφ =

{
xi : i ∈ I0

}
. For simplicity, we assume

that Gφ ∩ ∂Q = /0 so that no interior nodes are on the boundary of the computational domain.
We call D := {ek,−ek : k = 1, . . . ,n} the set of 2n grid directions. For any direction ξ ∈ D and
interior node i ∈ I0, if the neighbor y := xi +hξ does not belong to Gφ , that is, φ(y) ≥ 0, we add
a boundary node at position xi + thξ where t is the root of the linear interpolation of φ between
φ(xi) and φ(y). Specifically,

(1− t)φ(xi)+ tφ(y) = 0.

This gives

t =
φ(xi)

φ(xi)−φ(y)
. (3.3)

In this way, we add a set of boundary nodes that we index by an index set ∂ I, with I0∩∂ I = /0. See
Figure 3 for an illustration. The values at the boundary nodes are given by the boundary condition,
that is, as 0 on the free boundary and 1 on ∂K.

For any node indexed by i ∈ I0 and direction ξ ∈ D , we denote the index of the closest node
from xi in the direction ξ as j(i,ξ ) ∈ I := I0 ∩ ∂ I. Given a grid function v : I → R, then the
discretization of −∆ at node i ∈ I0 is given by

−∆u(xi)≈ (Lv)i :=
1
h ∑

ξ∈D

vi − v j(i,ξ )

|xi − x j(i,ξ )|
. (3.4)

Yoon-Min [24] proved that, in dimension n = 2, if u is the solution of{
−∆u = f , in {φ < 0},

u = g, on ∂{φ < 0},

under the assumption that ∂{φ < 0}, f and g are smooth, and v is the solution of the linear system{
(Lv)i = f (xi), i ∈ I0,

vi = g(xi), i ∈ ∂ I,
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j(i,+e2)

i

j(i,−e2)

j(i,+e1)j(i,−e1)

Figure 3: Grid nodes: The location xi of interior nodes i ∈ I0 indicated by empty circles ◦, and
interface nodes i ∈ ∂ I indicated by filled circles •. For each interior node xi, i ∈ I0 and direction
ξ ∈ D = {±e1,±e2}, its closest neighbor x j(i,ξ ) is given by the index j(i,ξ ) ∈ I = I0 ∪∂ I.

with the boundary node position assumed to be exact (i.e., no interpolation), then

max
i∈I0

|u(xi)− vi|= O(h2).

Let us give a formal argument on why we can expect O(h2) accuracy in our case; see also [5,
Sec. 3.1] for discussion. Since we find the boundary nodes by a linear interpolation (3.3) along
direction ξ ∈ D , we obtain a Ch2/|Dφ ·ξ | accurate position of the boundary nodes. Furthermore,
u can be extended to a smooth function near ∂{φ < 0}, and this translates to Ch2|Du ·ξ |/|Dφ ·ξ |
error for the boundary data of v. Since Du and Dφ are parallel at the free boundary, we deduce
that the boundary data has Ch2|Du|/|Dφ | error. By the maximum principle for the discrete scheme
(note that the scheme is monotone), the resulting error is still O(h2) in the maximum norm, as long
as Dφ is nondegenerate at the free boundary.

The resulting linear system is symmetric and therefore can be solved using a CG method. We
use a simple multigrid preconditioner to speed up the convergence. The linear systems on the lower
resolution grids are constructed by the same approach based on a sub-sampled level set function.
The use of the multigrid method as a preconditioner of the CG method rather than a direct solver is
inspired by [12]. The convergence of the multigrid solver often slows down drastically on domains
with complicated topology, and the CG method recovers the original convergence.

Let us explain the used multigrid solver. Given a level set function φ : G → R, we apply it to
the resulting linear system

aivi − (Lv)i = fi, i ∈ I0, (3.5)

where Lv is defined in (3.4) and ai, i ∈ I0 is a given vector. For the level set method we set ai ≡ 0,
while for the BBR scheme we use ai =

γ

τ
1{wk−1

i <0}.
The level set function φ for the level set method is taken to be

φ := max(φ k,φK),

where φ k is the level set function of the free boundary at time step k, and φK is the signed distance
function of K such that {φK < 0}= R2 \K.
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For the BBR method, we formally take φ to be

φ := max(φQ,φK),

where φQ is the signed distance function of Q with {φQ < 0}= Q. Therefore the nodes on ∂Q are
boundary nodes, with Dirichlet boundary condition 0.

The multigrid solver is implemented on the uniform grid G on Q. We have grids Gh := Q∩hZ2

and G2h := Q∩2hZ2, etc., up to the coarsest grid G1/2.
We first define the standard transfer operators: restriction and prolongation. Let vh : Gh → R

and v2h : G2h → R. The restriction operator I2h
h : (G2h → R)→ (Gh → R) is defined at x = 2hp ∈

G2h, p ∈ Z2, as

I2h
h vh(x) := 1

4 vh(x)+ 1
8 ∑

ξ∈D

vh(x+hξ )+ 1
16 ∑

ξ=(±1,±1)
vh(x+hξ ).

Note that the last term sums over the 4 diagonal directions.
The prolongation Ih

2h : (Gh →R)→ (G2h →R) is defined as Ih
2h := 4(I2h

h )∗, that is, it is a scaled
adjoint of the restriction. Setting x = 2ph, p ∈ Z2, it reads as

Ih
2hv2h(x) := v2h(x),

Ih
2hv2h(x+he1) := 1

2(v
2h(x)+ v2h(x+2he1),

Ih
2hv2h(x+he2) := 1

2(v
2h(x)+ v2h(x+2he2),

Ih
2hv2h(x+h(e1 + e2)) := 1

4

(
v2h(x)+ v2h(x+2he1)

+ v2h(x+2he2)+ v2h(x+2h(e1 + e2))
)
,

whenever the node on the left-hand side is in Gh. It is the bilinear interpolation of the values on
G2h. It is crucial that the prolongation and restriction operators are (scaled) adjoints of each other
for the multigrid V-cycle to be an admissible preconditioner for the CG method, see [23, 12].

With the transfer operators defined, we can introduce the matrices Ah, A2h, . . . , for the individ-
ual grids. We are given φ h(x) = φ(x), x ∈ G = Gh and

ah(x) =

{
ai, x = xi for some i ∈ I0,

0, otherwise.

Note that this is trivial in the case of the level set method as ai ≡ 0. It is also natural for the BBR
scheme as ai = 0 at nodes near K.

We define φ 2h = φ h on G2h, φ 4h = φ 2h on G4h, etc., which is a simple subsampling of φ . On the
other hand, a2h = I2h

h ah, a4h = I4h
2h a2h, etc., using the restriction operator to add some smoothing to

the coefficients. This appears to improve the convergence of the CG method.
With a2kh, φ 2kh defined on each G2kh grid, we construct A2kh and b2kh as the matrix and right-

hand side of the corresponding linear system (3.5) (with index sets I2kh, etc.)
We are finally ready to state the multigrid V-cycle:

(a) k times iterate the smoother for Ahvh = bh starting with vh,(0), obtaining vh,(k).

(b) Find the residual rh = bh −Ahvh,(k).

(c) Restrict the residual b2h = I2h
h rh.

(d) Solve A2he2h = b2h recursively, getting an approximate solution ẽ2h.
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(e) Prolong the approximation error ẽh = Ih
2hẽ2h, but set ẽh = 0 on Gh ∩

{
φ h ≥ 0

}
.

(f) Correct the approximation ṽh = vh,(k)+ ẽh.

(g) k times iterate the smoother for Ahvh = bh starting with ṽh, obtaining ṽh,(k).

At step (d) to obtain ẽ2h, we apply the V-cycle once, with initial guess the zero vector. On the
lowest resolution grid with a nontrivial linear system we use a few iterations of the Jacobi method
to approximate the exact solution. We use the damped Jacobi method as the smoother with damp-
ening parameter ω = 2/3, applied k = 4 times.

In Figure 4 we present a convergence test of the multigrid-preconditioned CG method for a
numerical setup matching Section 4 with coefficient g5 (4.5). The CG method decays the residual
by about the same factor at each iteration. In general, the convergence is slightly faster for the
level set method. However, in the case of the level set the factor worsens when the topology of the
free boundary becomes more complex. The convergence, in particular for the BBR method, can
be sped up by using the V-cycle twice at step (d) to obtain a better estimate ẽ2h, for about 2 times
increased computational cost of the CG iteration. But the improvement of the residual decay is
not large enough to justify the additional computational cost in the tests we performed.

3.2 Approximation of the normal velocity near the boundary

Based on the discrete solution of the Laplace equation, we approximate its gradient Dvk at the
nodes inside the computational domain as described in [5, Sec. 3.3.1]. The normal velocity at
these nodes is then approximated as

V k(x) := g(x, tk)|Dvk|(x)

at grid points x ∈ G near the boundary, i.e., such that φ k(x) < 0 while at least one of its stencil
neighbors x±hei, 1 ≤ i ≤ n, satisfies φ k ≥ 0. This provides an O(h) approximation of the normal
velocity.

3.3 Extension of the normal velocity

The values of V k are extended from the nodes near the boundary to the whole domain as an
approximate solution to (3.2). We use the upwind discretization and the fast marching method as
described in [17, Sec 8.3].

3.4 Update of the level set function

We discretize the level set equation (3.1) in time using a forward Euler method and in space using
a Godunov discretization of the Hamiltonian, see for example [4].

Defining the finite differences at the interior nodes,

D±
i (x) =

φ k(x±hei)−φ k(x)
h

, x ∈ G0, i = 1, . . . ,n,

the Godunov Hamiltonian HG(φ
k) that approximates the Hamiltonian V |Dφ | is

HG(φ
k) =


V k

(
n

∑
i=1

max(D+
i ,D

−
i ,0)

2

) 1
2

, V k ≤ 0,

V k

(
n

∑
i=1

min(D+
i ,D

−
i ,0)

2

) 1
2

, V k > 0.
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Figure 4: The mean residual decay in the ℓ2-norm (top) and the mean error decay of ek = vk − v
in the max norm (bottom), with v the exact solution of the linear system, of the first 6 iterations of
the preconditioned CG solver as a function of time t for 3 grid resolutions: BBR scheme (solid)
and level set method (dotted). We use Hele-Shaw coefficient g5 (4.5) so that a topological change
of the free boundary occurs around t ∈ [0.06,0.08], see Figure 5.

The forward Euler method for the level set equation then reads

φ
k+1 = φ

k − τHG(φ
k) on G0.

3.5 Adjusting the level set function

In this section we write φ = φ k : G → R for fixed k. In the above discretization it is important
that Dφ does not degenerate to 0 or develop a singularity near the zero level set of φ . This is one
motivation for the constant extension of V along the streamlines of Dφ using (3.2). However, as
the zero level set evolves and possibly undergoes topological changes, the gradient of the level set
function degenerates and needs to be artificially adjusted. Most commonly, φ is reinitialized as
an approximation of the signed distance function of the zero level set of φ , see (A.2). Often, an
iterative scheme is used, [4, Sec. 3]. Unfortunately, this iteration scheme requires many (∼ 100)
iterations and needs to be implemented carefully not to move the interface [21]. However, since
O(h2) accuracy is sufficient near the zero level set in our case, we perform the reinitialization
using the fast sweeping method [25]. This approach requires only 2n sweeps through the domain
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in the 2n diagonal directions in a Gauss-Seidel fashion to produce an O(h2) accurate result near
the zero level set. However, the fast-sweeping method requires an O(h2) accurate initialization
at the nodes directly neighboring {φ = 0}. These nodes are initialized by a simple second order
accurate scheme: we define the grid cells Cq = q+[0,h]n, q ∈ hZn. Let D(q), q ∈ hZn denote the
second order accurate finite difference approximation of the gradient of φ at the center of the grid
cell Cq, that uses the corner nodes of the cell Cq. For a given node p ∈ G0 we define the set of
neighboring cells that intersect {φ = 0}, i.e.,

I(p) :=
{

q ∈ hZn : p ∈Cq and φ changes sign on Cq ∩G
}
.

We define the initialized value of the distance function d as

d0(p) := inf
q∈I(p)

|φ(p)|
∥D(q)∥ ,

and set it to +∞ if I(p) = /0, that is, when p is not “near” the level set {φ = 0}. We believe
that this initialization is new. After this initialization, 2n sweeps of the fast sweeping method are
performed, and finally the sign is set to match that of φ at each grid node.

4 Numerical results and Discussion

In this section, we present numerical experiments with our proposed BBR-like scheme (1.2) in
n = 2 spatial dimensions, and compare its performance to the level set method described in
Section 3. For simplicity, we consider the spatial computational domain Q = (0,1)2 with grid
G = hZ2 ∩ Q given resolution N ∈ N so that h := 1/N, as discussed in Section 2.1 and Sec-
tion 3. To allow easy implementation of the multigrid method, N is always a power of 2. We set
K = {|x− (0.5,0.5)| ≤ ρ} and Ω0 = {|x− (0.5,0.5)|< r0} with ρ = 0.05 and r0 = 0.1.

The time step must be chosen sufficiently small τ ∼ h/maxg for both methods to be stable.
We set τ = h/8 for simplicity (see also Section 2.2), and compute the approximate solution at time
Ti for given gi below, i = 1, . . . ,5:

T1 T2 T3 T4 T5

100×2−9 100×2−9 80×2−9 50×2−9 200×2−9

The values Ti are chosen so that the free boundary stays sufficiently away from ∂Q to justify the
Dirichlet boundary condition on ∂Q for the BBR scheme; see the discussion in Section 2.2.

Finally, for the BBR scheme (1.2) we choose γ according to (2.4).
For numerical tests, we consider g(x, t) = gi(10x,10t) where gi is one of the following func-

tions:

g1(x, t) = 1, (4.1)

g2(x, t) = (x1 −0.5)2 +(x2 −0.5)2 + t, (4.2)

g3(x, t) = 0.5+ cos2(πt), (4.3)

g4(x, t) = sin(2π(x1 + t))+2, (4.4)

g5(x, t) =
1

1+25sin6(πx1)sin6(πx2)(1+ cos2(πt))
. (4.5)

The functions g1, g2 and g3 are radially symmetric with respect to (0.5,0.5) and therefore we
can compare the numerical solution directly against the “exact” radially symmetric solution in
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Section A.1. More precisely, we find the numerical solution r(t) of the ODE (A.1) accurately
using Runge-Kutta 4th order method (with time step τ = 10−4). The signed distance function of
the radial solution is given exactly as

sdΩt (x) = |x− (0.5,0.5)|− r(t). (4.6)

The function g4 is not a radially symmetric function but the free boundary is still smooth with-
out topological changes. It is interesting for the study of homogenization as its homogenization
limit exhibits strong velocity pinning in x1 direction, see [18]. The function g5, due to its “high
contrast”, induces topological changes in the free boundary during evolution, see Figure 5.

Figure 5: Free boundary evolution at three different time steps illustrating the topological change
induced by the function g5 defined in (4.5). The time step drawn by the solid contour developed
small “bubbles” that close up after a short time.

For each test case g1, . . . , g5 and each numerical method, we estimate the error e(N) based
on the Hausdorff distance of the zero level set of the solution for resolutions N = 26, . . . ,210. The
estimated order of convergence (EOC) is given by the formula

EOC(N) = log2 e(N/2)− log2 e(N).

Depending on g, we perform two kinds of numerical error estimates:

(a) For g1, g2 and g3 we have a radial solution available so we find the approximate Hausdorff
distance of the numerical free boundary of both the BBR scheme and the level set method
against the radial solution, using the formula (A.4). The approximate signed distance func-
tions from Section A.3 are compared again the exact signed distance (4.6). See Table 1 and
Figure 6.

(b) For g4 and g5, the exact solution is not available, so we find the approximate Hausdorff
distance of the BBR scheme and the level set method against the numerical solution using
the BBR scheme (1.2) with higher resolution Nhigh = 214. See Table 2 and Figure 7. For
this resolution, the uniform grid implementation is too slow, so we use an optimized imple-
mentation on an adaptive quadtree mesh with high resolution only near the interface, via the
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discretization of the Laplacian described in [13]. The solution with this method has essen-
tially the same free boundary position, see the caption of Figure 7. Near the free boundary,
the nodes of the quadtree mesh are at the same location as the nodes of the uniform high
resolution grid (with resolution Nhigh). The signed distance is computed as explained in Sec-
tion A.3, on the quadtree mesh. Since the quadtree mesh is uniform near the free boundary,
this produces the same result as if it was computed on a uniform grid. Then the result is
copied onto the high resolution uniform grid. On the other hand, the signed distance of the
low resolution result is first computed on the original low resolution grid using Section A.3,
and then bilinearly interpolation onto the high resolution grid (we use a repeated application
of the prolongation operator of the multigrid method). The Hausdorff distance is estimated
using (A.4) on the high resolution grid from the two resulting approximate signed distance
functions.

Comparison of the computational cost

The results of this section have been obtained using a simple Python reference implementation
of both methods. We provide the code at https://github.com/pozar-lab/hele-shaw-bbr.
The priority of this implementation is its correctness and it has not been optimized for perfor-
mance. The BBR method takes about twice the computational time of the level set method. How-
ever, we believe that with proper optimization, the BBR method can potentially be faster. Due to
its simplicity, the matrix for discretization of the Laplacian is constructed only once and then each
time step requires only

• a linear system solve for the approximation of uk, and

• a trivial update of wk.

The proposed CG method with multigrid preconditioner only relies on sparse matrix products,
both of these steps are trivially parallelizable. This parallelization is not explored in the Python
code. Furthermore, the stopping condition of the CG method should be tuned more precisely.
Based on Figure 4, only 4–6 iterations should provide sufficiently accurate solution for mesh
resolutions N ≤ 4096. However, it should be noted that the BBR method requires a band of 10h–
20h nodes outside of the free boundary to resolve the transition layer (1.2b), in contrast to the level
set method, increasing the number of unknowns.

On the other hand, the CG method in the level set method case converges slightly faster, saving
on 2–3 iterations if tuned properly, but additionally requires at each time step an update of the
discrete Laplacian matrix as the free boundary advances (Section 3.1), a velocity extension (Sec-
tion 3.3) and a periodic reinitializations (Section 3.5). The latter two rely on the fast marching or
fast sweeping methods, both of these are more challenging to parallelize; see [4] for references.

Conclusion.

Based on the numerical experiments, we see that both methods appear to have O(h) convergence.
When the free boundary is smooth, as in the radially symmetric cases g1, g2, g3, the level set
method appears more accurate by a constant factor as it can track the free boundary to a subgrid
precision via a linear interpolation, which is not possible with the BBR-like method. However,
this advantage seems to diminish or completely disappear in a solution with a more complicated
free boundary, especially when topological changes occur (g5 in Figure 5), where both methods
have about the same error in the free boundary position. Since our proposed BBR-like method

https://github.com/pozar-lab/hele-shaw-bbr


Md. Joni ALAM and Norbert POŽÁR 147

N Error (BBR) EOC (BBR) Error (LS) EOC (LS)
g1 64 3.63×10−2 6.53×10−3

128 1.80×10−2 1.01 3.22×10−3 1.02
256 9.04×10−3 0.99 1.59×10−3 1.02
512 4.72×10−3 0.94 7.94×10−4 1.00
1024 2.32×10−3 1.02 3.98×10−4 1.00

g2 64 3.38×10−2 4.67×10−3

128 1.65×10−2 1.03 2.36×10−3 0.98
256 8.49×10−3 0.96 1.17×10−3 1.02
512 4.12×10−3 1.04 5.87×10−4 0.99
1024 2.12×10−3 0.96 2.95×10−4 0.99

g3 64 4.23×10−2 7.39×10−3

128 2.17×10−2 0.96 3.72×10−3 0.99
256 1.00×10−2 1.12 1.90×10−3 0.97
512 5.07×10−3 0.98 9.54×10−4 0.99
1024 2.51×10−3 1.01 4.80×10−4 0.99

Table 1: Errors and estimated order of convergence for the BBR scheme and the level set (LS)
method compared to the exact solution in the radially symmetric case for g1, g2, and g3.

N Error (BBR) EOC (BBR) Error (LS) EOC (LS)
g4 64 3.86×10−2 2.14×10−2

128 1.98×10−2 0.96 8.86×10−3 1.27
256 9.93×10−3 1.00 3.95×10−3 1.16
512 5.37×10−3 0.89 1.91×10−3 1.05
1024 2.65×10−3 1.02 9.61×10−4 0.99

g5 64 8.87×10−2 9.21×10−2

128 8.45×10−2 0.07 2.50×10−2 1.88
256 8.69×10−3 3.28 1.04×10−2 1.26
512 4.09×10−3 1.09 4.59×10−3 1.18
1024 2.37×10−3 0.79 2.22×10−3 1.05

Table 2: Errors and estimated order of convergence for the BBR scheme and the level set (LS)
method compared to a high resolution solution (Nhigh = 214 using BBR scheme) for g4 and g5.

(1.2) is simpler and significantly easier to implement, and potentially faster to compute than the
level set method, it appears to be a competitive alternative to the level set method when higher
order accurate method is not needed, as in the numerical homogenization of the Hele-Shaw prob-
lem (1.1). It trivially generalizes to higher dimensions. However, to make this method practical
in 3D, an adaptive mesh refinement seems necessary. We chose the discretization and multigrid-
preconditioned CG method so that they can be easily adapted to quadtree and octree meshes. In an
upcoming paper on the homogenization of the Hele-Shaw-type problem in three dimensions we
use a 3D implementation with an octree mesh refinement. We do not pursue the 3D case in this
paper as the main complexity comes from the mesh refinement aspect and it would overshadow
the otherwise simple scheme.



148 A simple thresholding-like numerical scheme for a Hele-Shaw-type problem

26 27 28 29 210
N

10 3

10 2

d H

g1
g2
g3
h

Figure 6: Log-log plot of the errors in Table 1 for g1, g2 and g3, each indicated by the color with
solid line (BBR scheme) and dashed line (level set method).

A Radial solutions and error estimation

A.1 Radially symmetric solutions of the Hele-Shaw problem

We consider the Hele-Shaw problem (1.1) with radially symmetric data, that is, we assume that
K = {|x| ≤ ρ} and Ω0 = {|x|< r0} for some 0 < ρ < r0, and that g(x, t) = f (|x|, t) for some pos-
itive Lipschitz continuous f . By uniqueness of (1.1) in star-shaped setting, see [20], the solution
will also be radially symmetric Ωt = {|x|< r(t)} for some r(t) that can be determined by an ODE.

Indeed, let us for simplicity assume n = 2, as n ≥ 3 is analogous. The unique solution of (1.1b)
is

v(x, t) =
logr(t)− log |x|
logr(t)− logρ

, in Ωt \ intK = {ρ ≤ |x| ≤ r(t)}.

Therefore for x ∈ ∂Ωt we have

r′(t) =V (x, t) = g(x, t)|Dv(x, t)|= f (r(t), t)
r(t)

log
(

r(t)
ρ

)
, t > 0, (A.1)

with r(0) = r0.

A.2 Hausdorff distance via the signed distance function

To quantify the error of the numerical approximation of Ωt , we use an approximation of the Haus-
dorff distance of the boundary of two sets. Let A,B ⊂ Rn and let sdA and sdB be their respective
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Figure 7: Log-log plot of the errors in Table 2 for g4 and g5, each indicated by the color with solid
line (BBR scheme) and dashed line (level set method). For the solid line (BBR scheme), we plot
errors for both the reference uniform grid implementation (marker ×) and the optimized quadtree
mesh implementation (used also for the high-resolution solution; marker ·), verifying that both
implementations yield essentially the same position of the free boundary.

signed distance functions, that is, for example

sdA(x) :=

{
dist(x,A), x ∈ Ac,

−dist(x,Ac), x ∈ A.
(A.2)

Note that sdA(x) = 0 on ∂A.
The Hausdorff distance between sets ∂A and ∂B is

dH(∂A,∂B) = max
(

sup
x∈∂A

dist(x,∂B), sup
x∈∂B

dist(x,∂A)
)
,

which can be written using the signed distance functions as

dH(∂A,∂B) = sup{|sdA(x)− sdB(x)| | min(|sdA(x)|, |sdB(x)|) = 0}. (A.3)

For the numerical solution, we only know an approximation of the signed distance functions at
the grid nodes in the grid G ⊂ Rn, so we approximate the Hausdorff distance by considering the
signed distance difference on a δ = 2h > 0 neighborhood proportional to the grid step h, that is,

dH(∂A,∂B)≈ max
{
|s̃dA(x)− s̃dB(x)|

∣∣x ∈ G, min(|s̃dA(x)|, |s̃dB(x)|)≤ δ
}
, (A.4)

where s̃dA and s̃dB are approximate signed distance functions on the grid G. Note that if the same
δ is added in (A.3), the right-hand side is an upper bound on dH(∂A,∂B). See [10] for related
results and estimates on approximating the Hausdorff distance of two sets using their distance
functions.
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A.3 Approximate signed distance function

Here we briefly explain how we approximate the signed distance functions used in (A.4) for the
error estimates in Section 4.

For the level set method, we approximate the signed distance function using the fast sweeping
method discussed in Section 3.5. This provides a discrete approximation of the signed distance
function to

{
φ k = 0

}
that is O(h2) accurate in a Ch-neighborhood of

{
φ k = 0

}
. We denote this

approximation by sdLS(φ
k).

For the BBR method (1.2), since wk has a jump at ∂
{

wk ≥ 0
}

, it is not possible to determine the
position of the interface with better than the grid resolution precision. We therefore incorporate
this error into the signed distance function approximation in the following way. Let us denote
the discrete approximation of wk on the grid G as w̃k. We use the fast sweeping method [25]
to compute approximate discrete distance functions d̃+ and d̃− to the sets

{
x ∈ G | w̃k(x)≥ 0

}
and

{
x ∈ G | w̃k(x)< 0

}
, respectively, by initializing their value to zero in the respective sets and

running the fast sweeping method. The approximate signed distance function to
{

wk ≥ 0
}

is then
set to be

sdBBR(w̃k)(x) := d̃+(x)− d̃−(x), x ∈ G.
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