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Abstract. By means of a state-of-the-art first-principles calculation of quasi-particle self-
consistent GW (QSGW) method, we investigated electronic structures and generalized 
susceptibilities in cubic Fe3X (X=Pd, Pt) alloys. Compared with those of the density 
functional method with generalized gradient approximation, the energy band structure 
indicates both an energy level shift to the high energy side and a narrowing bandwidth in 
the minority-spin state. Employing the rigid band approximation, the profile of generalized 
susceptibility was found to indicate the peak positions at 𝒒𝒒 = (2π/𝑎𝑎)(1/2,1/2,0)  for 
X=Pd and 𝒒𝒒 = (2π/𝑎𝑎)(1/8,1/8,0)  for X=Pt to the modulation wave vector. These 
modulations may be assigned to the instability of the cubic symmetry phase in the 
martensitic phase transition observed in the experiment. 
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1  Introduction 
Magnetic shape memory alloys have been continuously spotlighted since Ullakko et al. [1] found 
an exotic material of Ni-Mn-Ga alloy: Large magnetic-field-induced strains. Its strain was nearly 
0.2% along the [001] direction, although such a ratio was not so large compared with other kinds 
of shape memory alloys. However, the magnetic materials with shape memory effect have a 
potential to the application of actuators without imposing external stresses. Nowadays, various 
kinds of magnetic shape memory alloys are studied in the fields of both basic and applied science 
along the alloy-suits technological applications such as magneto-mechanical actuators, sensors, 
and refrigerants [2,3,4]. The series of Ni-Mn-Ga based alloys has still fascinated the researchers 
and developers who investigate the microscopic/nanoscopic structure of materials [5, 6]. 

The alloys which have been considered as materials of large magnetic-field-induced strain, 
apart from the Ni-Mn-Ga based alloys, are in the following: Fe-Pd based, Fe-Pt based, Ni-Mn-Al 
based, Fe-Ni-Ga based, and Co-Ni-Al based [7,8,9,10]. Although the intensity of studying iron-
based Fe-Pd and Fe-Pt tends to be less than Ni-Mn-Ga, the simplicity of structure and large value 
of magnetic anisotropy, Fe3Pd and Fe3Pt are very attractive in understanding behavior of some 
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instabilities leading to martensitic transformation. These materials were investigated on 
martensitic transformation as an invar metal in 1980’s [11]. The Fe alloy with 30 atomic % Pd 
[Fe(100–x)Pd(x) with x=30] has been well known as good invar, indicating the martensitic 
transformation from a face centered cubic (FCC) structure to face centered tetragonal (FCT) one 
at around 270 K [12]. Its transition temperatures near the room temperature provided a long 
history on research work as well as increased possible applications. One of the important research 
works on phase transition has been performed in the range of 29.5 < x < 31.5. In the low 
concentration range (29.5 < x < 30.6), the successive phase transition from the FCT to a body 
centered tetragonal (BCT) occurs at a decreasing temperature. In the high concentration (30.6 < 
x < 31.5) FCTs have been reported only. For Fe(100–x)Pt(x), a similar phase diagram has been 
reported, but its concentration range appears in 25.5 < x < 27.5 with the low transition 
temperatures [13]. The number of electrons increases as the x-concentration increases. For 
example, the case x=30 has 10 more electrons than those of x=25 in Fe(100–x)X(x). 

The electronic structure calculation based on the density functional theory (DFT) has been 
improved with many qualifications of exchange-correlation functional. Nowadays, the 
generalized gradient approximation (GGA) is one of the standards, and well-known as a 
conventional method [14]. Such an approach is powerful for evaluating a lot of kinds of physical 
quantities. With additional Hubbard U corrections, known as GGA+U, such approaches provide 
useful tools to sketch the electronic structure of various materials. Using high performance 
computers, the large size system containing a hundred or thousand atoms in its simulation cell 
can be applicable to the analysis of electronic structures. Those results obtained allow us to 
compare with the corresponding experimental counterpart. The GGA+U approaches as well as 
the GGA are often used for discussions on the comparison with experiment [15,16]. 

Depending on the quality of physical accuracy and requirement for the comparison, the 
approaches mentioned in the above paragraph are not sufficient for comparing the experimental 
results. In particular, the set of energy levels is sometimes obtained as shifted one due to a large 
electron localization effect in the materials. The band gap of semiconductors is one of typical 
deviations from the experimental result. For example, the bulk Si has a band gap of about 1 eV in 
the experiments, while a value reduced to approximately around half is obtained in the GGA 
calculations [17]. In our experience on the band Jahn-Teller effect in Ni2MnGa which shows a 
martensitic transformation, the band to occur on the Fermi level was deviated by about 0.2 eV to 
the lower energy side in GGA. This energy deviation is not small but rather large when 
considering the phenomena related to the instability transferring to a low symmetry system at 
around room temperatures. In the previous work, the theoretical investigation employed a state-
of-the-art approach of first-principles electronic structure calculation, quasi-particle self-
consistent GW (QSGW) method, and found the band of band Jahn-Teller effects to appear just on 
the Fermi level [18, 19]. Moreover, the analyses of generalized susceptibility found that the Fermi 
surface nesting occurs at the wave vector which corresponds to the lattice modulation in the low 
temperature phase. The quality of eigenvalues obtained in the QSGW possibly provides an 
opportunity to discuss the instability of its martensitic transformation. 

The regular alloys, Fe3X with X=Pd, Pt, have been studied by the approach based on DFT 
with GGA [20]. The authors investigated the lattice dynamics and structural stability through the 
calculations of total energies, phonon dispersion relations, Fermi surfaces, etc. The phonon 
dispersion indicated the instability on the phonon frequency for the transverse acoustic mode at 
around the wave vector 𝒒𝒒 = (2π/𝑎𝑎)(𝜉𝜉, 𝜉𝜉, 0)  with 𝜉𝜉 = 1/2 . In addition, the weaker phonon 
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softening appeared at the wave vectors along the [111] direction. The tendencies of phonon 
softening were similar between both alloys. 

In this work, the electronic structures of the alloys, Fe3X with X=Pd, Pt, were investigated 
using the QSGW method, and the instabilities were discussed using the analysis of generalized 
susceptibility. For X=Pd, the set of eigenvalues for QSGW indicated an energy deviation from 
those of GGA around the Fermi level and, within the rigid band approximation, the peak position 
of the generalized susceptibility was obtained at (2π/𝑎𝑎)(𝜉𝜉, 𝜉𝜉, 0) with 𝜉𝜉 = 1/2 for the number 
of electrons (x-concentration) at which the martensitic transformation indicates in experiments.  
 
2  Methods and calculation details 
The quasi-particle self-consistent GW (QSGW) method employs the GW approximation (GWA), 
where the self-energy part of Dyson equation is represented as the product of the one-particle 
Green’s function G and the screened Coulomb interaction W [21,22]. In QSGW, such a self-
energy is used as a set of the exchange-correlation potentials for the inputs of the one particle 
equation like a Kohn-Sham equation in the DFT approach. The iterative procedure with a self-
consistent manner for improving the exchange-correlation potentials provides the band narrowing 
to localized d- or f-electron systems. As a consequence, the electron localization effect can be 
considered in the electronic structure. Electronic states with accurate energy levels appearing on 
the Fermi level play a critical role in the phenomena, for example, in the phase transition related 
to band Jahn-Teller effect.  

The QSGW method, as well as the method of DFT, the eigenvalues 𝜖𝜖𝑗𝑗 and eigenfunctions 
Ψ𝑗𝑗(𝒓𝒓) can be obtained from the following equation: 
 

     �− ℏ2

2𝑚𝑚
∇2 + 𝑉𝑉ext + 𝑉𝑉H + 𝑉𝑉XC� �Ψ𝑗𝑗� = 𝜖𝜖𝑗𝑗�Ψ𝑗𝑗� .                  (1) 

 

In this formula, − ℏ2

2𝑚𝑚
∇2, 𝑉𝑉ext, 𝑉𝑉H, 𝑉𝑉XC are kinetic energy, nuclei, Hartree, exchange-correlation 

potentials, respectively. In solving 𝜖𝜖𝑗𝑗  and Ψ𝑗𝑗(𝒓𝒓 ) with 𝑉𝑉ext  and 𝑉𝑉H , the 𝑉𝑉XC  is adjusted 
according to the specific method, QSGW or DFT. 

In the QSGW method, the way for obtaining exchange-correlation potential is presented as 
the following formula: 
 

𝑉𝑉XC = 1
2
� �Ψ𝑗𝑗� �Re�𝛴𝛴�𝜖𝜖𝑗𝑗��𝑗𝑗𝑗𝑗 + Re[𝛴𝛴(𝜖𝜖𝑘𝑘)]𝑗𝑗𝑗𝑗� ⟨Ψ𝑘𝑘|

𝑗𝑗,𝑘𝑘
 ,             (2) 

 
where Re  and 𝛴𝛴�𝜖𝜖𝑗𝑗�  are the Hermitian part and the self-energy, respectively. Self-energy 
𝛴𝛴�𝜖𝜖𝑗𝑗�  can be found from GWA: 𝛴𝛴(𝜖𝜖) = 𝑖𝑖𝑖𝑖𝑖𝑖 , where 𝑖𝑖  indicates the imaginary unit. In the 
practical evaluation, the W is evaluated within random phase approximation as 𝑊𝑊 =
(1 − 𝑣𝑣𝑣𝑣)−1𝑣𝑣, where the polarization function (𝛱𝛱) and the bare Coulomb interaction (𝑣𝑣). Once a 
new set of 𝜖𝜖𝑗𝑗 and Ψ𝑗𝑗(𝒓𝒓) is obtained, it is used in the evaluations of 𝛱𝛱, 𝑊𝑊, 𝛴𝛴, and 𝑉𝑉XC for the 
next iterative cycle. The details of QSGW are referred to the literatures [23, 24].  

The regular alloy Fe3X (X=Pd, Pt) has a structure of L12 with cubic symmetry. The structure 
and the 1st Brillouin zone (BZ) are presented in Fig. 1. The lattice constants 𝑎𝑎 for studying are 
listed in Table I. As seen in Fig. 1(a), three Fe atoms in the unit cell are symmetrically equal and 
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each Fe has a tetragonal local symmetry. Under cubic symmetry, the five-degenerate d-orbitals 
are separated into 𝑡𝑡2𝑔𝑔 −  and 𝑒𝑒𝑔𝑔 − orbitals. The former contains 𝑑𝑑𝑥𝑥𝑥𝑥,𝑑𝑑𝑦𝑦𝑦𝑦,  and 𝑑𝑑𝑧𝑧𝑧𝑧  orbitals, 
the latter 𝑑𝑑𝑥𝑥2−𝑦𝑦2 and 𝑑𝑑3𝑧𝑧2−𝑟𝑟2 orbitals. When focusing on the base-centered Fe in 𝑥𝑥𝑥𝑥-plane, 
𝑡𝑡2𝑔𝑔 is separated into 𝑑𝑑𝑦𝑦𝑦𝑦 + 𝑑𝑑𝑧𝑧𝑧𝑧 and 𝑑𝑑𝑥𝑥𝑥𝑥 , while 𝑒𝑒𝑔𝑔 is separated into 𝑑𝑑𝑥𝑥2−𝑦𝑦2 and 𝑑𝑑3𝑧𝑧2−𝑟𝑟2. 

Generalized susceptibility 𝜒𝜒(𝒒𝒒) can provide the behavior of structural instability. To study 
the electronic response to modification of the periodic structure is a fundamental reason for 
calculating this value. The generalized susceptibility determines how strongly electrons of the 
system respond to disturbance with a wave vector 𝒒𝒒 . The main properties of the generalized 
susceptibility can be related to Fermi surface nesting (FSN). In the present work, the following 
formula for 𝜒𝜒(𝒒𝒒) was investigated: 
  

𝜒𝜒(𝒒𝒒) = 𝜒𝜒↑(𝒒𝒒)  + 𝜒𝜒↓(𝒒𝒒) =
1
𝑁𝑁𝑘𝑘

�
𝑓𝑓�𝜖𝜖𝑛𝑛′,𝒌𝒌+𝒒𝒒,𝜎𝜎� − 𝑓𝑓�𝜖𝜖𝑛𝑛,𝒌𝒌,𝜎𝜎�

𝜖𝜖𝑛𝑛,𝒌𝒌,𝜎𝜎 − 𝜖𝜖𝑛𝑛′,𝒌𝒌+𝒒𝒒,𝜎𝜎𝑛𝑛,𝑛𝑛′,𝒌𝒌,𝜎𝜎

 , (3) 

                       
where 𝜒𝜒↑(𝒒𝒒)  and 𝜒𝜒↓(𝒒𝒒) , respectively, denote the majority- and minority-spin contribution, 
𝑁𝑁𝑘𝑘  is the number of 𝒌𝒌-points in the 1st BZ, and, 𝜖𝜖𝑛𝑛,𝒌𝒌,𝜎𝜎 and 𝑓𝑓 are the eigenvalues and Fermi 
distribution function, respectively, for the states specified with the band index 𝑛𝑛, wave vector 𝒌𝒌, 
and spin index 𝜎𝜎. The function 𝑓𝑓 is parametrized with the Fermi energy 𝜖𝜖F. 

The large value of the 𝜒𝜒(𝒒𝒒)  for wave vector 𝒒𝒒 = (2π/𝑎𝑎)�𝜉𝜉𝑥𝑥 , 𝜉𝜉𝑦𝑦, 𝜉𝜉𝑧𝑧�  can indicate strong 
FSN effect. This means that the wave vector 𝒒𝒒 corresponds to the direction along which the 
Fermi surfaces are efficiently nested. Such a type of amplification, when the electron-phonon 
interaction is not reduced sufficiently, may indicate structural and electronic instability of the 
system, which predicts structural phase transition to modulated structures or new type of 
symmetry. In this work, to investigate the feature of the x-concentration dependence, the analysis 
of the rigid band approximation to 𝜒𝜒(𝒒𝒒)  was applied. This approximation can predict an x-
concentration dependence for Fe(100–x)X(x).  

 

 

(a)                                      (b) 

              
  

Fig. 1. (a) Unit cell for cubic Fe3X (X=Pd, Pt) structure; (b) 1st Brillouin zone (BZ) with 
symmetric points and paths for band dispersion curve. 
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For both QGSW and GGA calculation, the same grid points of 10 × 10 × 10 mesh in 1st 
BZ were used for the self-consistent calculation. This amounts to 56 points of 𝒒𝒒 wave vector for 
the most time-consuming part of polarization function 𝛱𝛱 in each iterative self-energy cycle. The 
DFT method employed GGA of the Perdew-Burke-Ernzerhof (PBE) exchange and correlation 
potential [27]. The computations of QSGW and GGA were carried out using the implementation 
of ecalj package [28]. For the QSGW calculations of Fe3Pd and Fe3Pt, we employed a mixed basis 
set combining highly localized muffin-tin orbitals (MTOs) and Augmented Plane-Wave (APW). 
The plane-wave cutoff energy was set to 3 Ry, optimized to balance accuracy and computational 
efficiency. The muffin-tin radii were chosen as 𝑅𝑅MT = 2.46 bohr for both Pd and Fe atoms in Fe3

Pd structure, and 𝑅𝑅MT = 2.47 bohr for Pt and 𝑅𝑅MT = 2.36 bohr for Fe in Fe3Pt structure. The k-
point mesh used for the density of states (DOS) calculations was 10 × 10 × 10  in the 1st 
Brillouin zone for both structures. The convergence criteria were set to 10 meV for the maximum 
change in all calculated quasi-particle energies. This means that the iterative process will be 
carried out until the maximum energy difference between successive iterations becomes lower 
than this value. In the 𝜒𝜒(𝒒𝒒) calculation, the grid points of 80 × 80 × 80 mesh were used in the 
1st BZ. In addition, for the calculation of Fe3Pt, effects of spin-orbit interaction (SOI) were 
investigated because of the hybridization between 3d- and 5d-electrons. The calculation with SOI 
was performed only within a perturbative treatment, evaluating the change in the energy level (𝜖𝜖𝑖𝑖). 
In Fe-X (X=Pd, Pt) alloy, transitions between the BCC, BCT, FCT, FCC are known depending on 
temperature and concentration of X; Fe(100–x)X(x) (X=Pd, Pt). Regarding the x-concentration, 
the combination with the rigid band approximation allows a better understanding of the 
percentage of elements (x) corresponding to a given number of electron states (or a Fermi energy 
shift). 
 
3  Results 

3.1  Magnetic moments  
The total and atomic magnetic moments calculated by QSGW have a tendency to increase 
compared with GGA. This tendency is typical in QSGW [18,19]. As shown in Table II, values of 
the total magnetic moment become larger by 8~9 % than in our case of GGA. Focusing on the 
atomic magnetic moment, the atomic magnetic moments of Pd and Pt are larger in QSGW by 
about 12% and 5%, respectively, and in the case of Fe, the atomic magnetic moment increased by 
about 8%. 

For Fe₃Pt, investigations using the QSGW method revealed that the calculated magnetic 
moment is overestimated relative to the experimental value of Ref. [31] by approximately 2%. 
This tendency for overestimation is also one of the characteristics of the QSGW approach, as it 
enhances the localization of magnetic moments due to its improved treatment of exchange and 
correlation effects. The observed discrepancy between the calculated and experimental magnetic 
moments may also be attributed to the inherent idealizations of the theoretical model. The present 

Table I. Lattice constants (𝑎𝑎) of the L12 structure Fe3X (X=Pd, Pt). 
 

                        Fe3Pd Fe3Pt 
Lattice constant [Å] 3.79 [25] 3.73 [26] 
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theoretical approach of QSGW assumes a defect-free crystal structure and neglects the effects of 
thermal fluctuations and structural inhomogeneities. Although the experimental value of Ref. [32]  
is slightly larger than the QSGW value, the authors reported the data with error bar and our QSGW 
calculation on magnetic moment does not contain the effect of SOI. Moreover, spin fluctuation 
as electron correlation effects [34] may be required for evaluating the magnetic moment more 
precisely in QSGW. 

It is noted that the experimental magnetic moment for Fe₃Pt was compared with the theoretical 
prediction, as in Table II. This is because the alloy closely comparable to an ordered alloy was 
synthesized for Fe₃Pt. As a result, the QSGW indicates a better agreement with experimental data, 
compared with the GGA. In contrast, due to the difficulties in synthesizing ideal (stoichiometric 
and regular) Fe₃Pd, the theoretical data on the magnetic moment does not find any appropriate 
experimental counterpart for comparison. Alloying effects can be accessed by increasing the 
number of atoms in the computational cell as a future problem. 
 
3.2  Total density of states 
The total density of states (DOS) for Fe3X (X=Pd, Pt) is presented in Fig. 2. The exchange 
splitting is clearly indicated, reflecting to the large magnetic moment in both alloys as presented 
in the previous subsection. The QSGW provides more spiky profile than the GGA as an overall 
feature. This is a consequence that electron localization effects were considered through the 
explicit inclusion of exchange-correlation potential in the QSGW method.  

Here, we focus on the energy range near the Fermi level (see the inset in Fig. 2). For Fe3Pd, a 
distinct peak at the Fermi level is noticeable in both QSGW and GGA. Moreover, for QSGW, 
another larger peak shifted by 0.1 eV above the Fermi level is noticeable in the total DOS. For 
Fe3Pt of QSGW, the density of the peak close to the Fermi level is larger compared with the peak 

Table II. Total magnetic moments [𝜇𝜇B f. u.⁄ ] and atomic magnetic moments [𝜇𝜇B atom⁄ ] in 
Fe3X (X=Pd, Pt) obtained by QSGW an GGA approaches. The experimental values are also 
reported. The data with Ref. [33] was estimated as a limit of zero temperature from the 
temperature dependence of measured magnetization.  
 

 Method Magnetic moments [𝜇𝜇𝐵𝐵] 
Total          Fe        X   

Fe3Pd QSGW 9.45 3.09 0.36 
GGA: 
PBE 8.70 2.86 0.32 

GGA: 
PBE 

8.45 [20] 
8.56 [29] 

 
2.74[29] 

 
0.33[29] 

Fe3Pt QSGW 9.16 2.97 0.41 
GGA: 
PBE 8.49 2.76 0.39 

GGA: 
PBE 

8.44 [20] 
8.0 [30] 

 
2.5 [30] 

 
0.5 [30] 

Exp. 
9.0 (7 K) [31] 
9.2 (77K) [32] 

8.8 [33] 
2.8 [32] 0.8 [32]  
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of GGA shifted by 0.1 eV to below the Fermi level. Such behavior of the peaks can correspond 
to a band Jahn-Teller effect which creates lower symmetry. The larger densities at the peaks in 
QSGW are a consequence of the band narrowing caused by the electron localization effect of d-
orbitals. In QSGW, the common features observed both in Fe3Pd and Fe3Pt are summarized as the 
energy level shift of about 0.1 eV and the band narrowing when compared with GGA.  
 
3.3  Band dispersion curves 
For both Fe3Pd and Fe3Pt, the QSGW and GGA methods provide metallic behavior, with band 
crossings at the Fermi level appearing in various directions of the Brillouin zone, as shown in Fig. 
3. The QSGW leads to a systematic shift of valence bands relative to the Fermi level. The bands 
with flat features close to Fermi level are observed around R points and along the lines from the 
R points to the directions of Γ, X, and M points for both alloys: at 0.1 eV through 0.2 eV for 

 

(a) 

 
(b) 

 
Fig. 2. Total density of states for Fe3X: QSGW (solid red lines) and GGA (dashed blue lines). 
(a) X=Pd, (b) X=Pt. Positive DOS values are for majority-spin state and the negative for 
minority-spin state. 
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Fe3Pd and at vicinity just on the Fermi level for Fe3Pd. In comparison with GGA, these band 
shifts to the higher energy around the vicinity of the Fermi level, corresponding to the larger 
exchange splitting, resulting in the larger magnetic moments in QSGW. Interestingly, in the 
energy ranges away from the Fermi level, around –4~–1 eV and 1~4 eV in Fig. 3, the band shift 
appears in the reversed direction as a lowering energy. 

The differences observed between the alloys imply a subtle difference on x-concentration 
observed in the experimental data. The presence of flat bands can provide the instability of 
electronic structure, suggesting a potential relationship with the band Jahn-Teller effect, 
particularly due to the localized 3d-3d- and 3d-5d-hybridized electron system in these materials. 

 

 
Fig. 3. Band dispersion curves for the minority-spin state: (a) Fe3Pd; (b) Fe3Pt for QSGW (red 
solid lines) and GGA (blue dotted lines). 
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3.4  Partial density of states 
Figures 4 and 5 show the projected components of the d-orbitals for the QSGW and GGA 
calculations, corresponding to Fe3Pd and Fe3Pt, respectively. In both alloys, the exchange splitting 
on Fe components is clearly indicated. For the component of X (Pd or Pt) atom, the intensity of 
the splitting looks larger in the component of 𝑡𝑡2𝑔𝑔 − orbitals than 𝑒𝑒𝑔𝑔 −orbitals (see Figs. 4(a), 
4(b), 5(a), and 5(b)). Since the angular directions in 𝑡𝑡2𝑔𝑔 −orbitals are aligned to the neighboring 
Fe atoms, the large exchange splitting on Fe is reflected in the partial density of states (PDOS) 
for X atom through the orbital hybridization between Fe and X.  

Analyzing the data from Fig. 4 (Fe3Pd), for the base-centered Fe atom, the 𝑡𝑡2𝑔𝑔 −  and 
𝑒𝑒𝑔𝑔 −orbitals on Fe provide a dominant contribution to the Fermi level, compared to the Pd atom. 
The local crystal field and hybridization remove the degeneracy of orbitals on Fe (see Figs. 4(c) 
and 4(d)). The component of 𝑑𝑑𝑦𝑦𝑦𝑦 + 𝑑𝑑𝑧𝑧𝑧𝑧 orbitals exhibits different peak behavior in the vicinity 
of the Fermi level compared to 𝑑𝑑𝑥𝑥𝑥𝑥 orbital. It is the main contribution to the peak at 0.1 eV above 
the Fermi level. For 𝑒𝑒𝑔𝑔 − orbitals, a lifting of the degeneracy between 𝑑𝑑𝑥𝑥2−𝑦𝑦2  and 𝑑𝑑3𝑧𝑧2−𝑟𝑟2 
appears and the former also contributes to the peak at 0.1 eV. A similar trend was observed for 
Fe3Pt, as shown in Fig. 5, where the local crystal field and hybridization also lead to the lifting of 
orbital degeneracy in 𝑡𝑡2𝑔𝑔 − and 𝑒𝑒𝑔𝑔 −orbitals on Fe atom (see Figs. 5(c) and 5(d)). The orbital 
splitting obtained in our results implies an expected mechanism on the martensitic transformation 
related to band Jahn-Teller effects. This picture will be discussed in the Discussions section.  

It is interesting to observe that the Pt peaks are located at the low energy by about 0.6 eV 
compared with those of Pd (see Figs. 4 (a), 4(b), 5(a), and 5(b)). This means that the Pt component 
tends to stay in the lower energy side than the Pt component with respect to the Fe component. 
Although these energy differences are much larger than the energy difference between Pt and Pd 
on the energy location of the band Jahn-Teller peak, which is addressed in the previous paragraph, 
the changing direction coincides with each other: the energy location of the band Jahn-Teller peak 
is lower in X=Pt than in X=Pd.  

Situations obtained by GGA in electronic structure may be similar to those of QSGW. 
However, the energy location of the band Jahn-Teller peak is lowered in GGA since the energy 
lowering comes from the over-binding feature of electronic structure in GGA. Such a feature 
prohibits the quantitative argument on the instability of electronic states related to the vicinity of 
Fermi level. In this point of view, although the quantitative difference of energy looks small, the 
QSGW method significantly improves description of the electronic structures in the magnetic 
alloys of Fe3Pd and Fe3Pt.  

In the next subsection, to treat the energy location of the band Jahn-Teller peak more 
quantitatively and to evaluate the generalized susceptibility under the rigid band approximation, 
the total DOS was integrated from the Fermi energy to some appropriate value.  
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Fig. 4. Partial density of states (PDOS) in Fe3Pd for QSGW (red solid lines) and GGA (blue 
dashed lines) projected to (a) Pd 𝑡𝑡2𝑔𝑔, (b) Pd 𝑒𝑒𝑔𝑔, (c) Fe 𝑡𝑡2𝑔𝑔, (d) Fe 𝑒𝑒𝑔𝑔. The components of 
𝑑𝑑𝑦𝑦𝑦𝑦 + 𝑑𝑑𝑧𝑧𝑧𝑧 , 𝑑𝑑𝑥𝑥𝑥𝑥 , 𝑑𝑑3𝑧𝑧2−𝑟𝑟2 , and 𝑑𝑑𝑥𝑥2−𝑦𝑦2  refer to the text. Positive PDOS values are for 
majority-spin state and negative for minority-spin state. 
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Fig. 5. Partial density of states (PDOS) in Fe3Pt for QSGW (red solid lines) and GGA (blue 
dashed lines) calculations projected to (a) Pt 𝑡𝑡2𝑔𝑔 , (b) Pt 𝑒𝑒𝑔𝑔 , (c) Fe 𝑡𝑡2𝑔𝑔 , (d) Fe 𝑒𝑒𝑔𝑔 . The 
components of 𝑑𝑑𝑦𝑦𝑦𝑦 + 𝑑𝑑𝑧𝑧𝑧𝑧 , 𝑑𝑑𝑥𝑥𝑥𝑥 , 𝑑𝑑3𝑧𝑧2−𝑟𝑟2 , and 𝑑𝑑𝑥𝑥2−𝑦𝑦2  refer to the text. Positive PDOS 
values are for majority-spin state and negative for minority-spin state. 
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3.5  Relation between the number of electrons and Fermi energy shift 
Figure 6 shows the increasing number of electrons estimated by the integration of total DOS for 
Fe3Pd and Fe3Pt. The horizontal axis specifies an energy shift of the Fermi energy in the rigid 
band approximation, while the vertical axis, namely integrated value, indicates the increased 
number of electrons in one formula unit (unit cell). As an example shown in Fig. 6(a), under the 
rigid band approximation, the energy shift of 0.098 eV corresponds to the additional 0.57 
electrons in the unit cell, which is compiled to the alloy concentration of x=32.12, while the origin 
of Fig. 6 corresponds to the alloy concentration of x=25.  

      (a)                               (b) 

 
Fig. 6. The increasing number of electrons with respect to the positive energy shift in vicinity 
of the Fermi level for (a) Fe3Pd and (b) Fe3Pt. The point symbol indicates the position 
corresponding to the maximum value in 𝜒𝜒(𝒒𝒒). 
 

 

 

 
Fig. 7. Profile of the QSGW generalized susceptibility of the minority-spin component 𝜒𝜒↓(𝒒𝒒) 
in Fe3Pd along the [1, 1, 0]  direction from the origin, depending on shift (Δ𝐸𝐸F = 0.07−
0.11 eV) from the Fermi level. 
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3.6  Generalized susceptibility 
Using the rigid band approximation, the generalized susceptibility 𝜒𝜒(𝒒𝒒)  was evaluated for a 
given Fermi energy shift Δ𝐸𝐸F and a given wave vector 𝒒𝒒 = 2𝜋𝜋

𝑎𝑎
�𝜉𝜉𝑥𝑥 , 𝜉𝜉𝑦𝑦 , 𝜉𝜉𝑧𝑧� in both alloys, Fe3Pd 

and Fe3Pt. As the results, we found that 𝜒𝜒(𝒒𝒒) took the maximum at Δ𝐸𝐸F = 0.098 eV in Fe3Pd 
and at Δ𝐸𝐸F = 0.029 eV in Fe3Pt, respectively, as referred in Fig. 6. For the maximum value, the 
corresponding wave vectors were determined as 𝒒𝒒 = (2π/𝑎𝑎)(1/2,1/2,0) for Fe3Pd and 𝒒𝒒 =
(2π/𝑎𝑎)(1/8,1/8,0) for Fe3Pt, respectively. The details of profile on 𝜒𝜒(𝒒𝒒) are presented and 
explained in the following subsections. 
 

 (a)                    (b)                     (c)    

 
     (d)                     (e)                     (f)            

 
     (g)                     (h)                    (i) 

 
Fig. 8. QSGW generalized susceptibility at Δ𝐸𝐸F = 0.098 eV in Fe3Pd: total 𝜒𝜒(𝒒𝒒), 
majority-spin 𝜒𝜒↑(𝒒𝒒), and minority-spin 𝜒𝜒↓(𝒒𝒒) components with (a)-(c) within the plane of 

𝑞𝑞𝑧𝑧 = 0; (d)-(f) within 𝑞𝑞𝑧𝑧  = �2𝜋𝜋
𝑎𝑎
� × 1

4
; (g)-(i) within 𝑞𝑞𝑧𝑧 = �2𝜋𝜋

𝑎𝑎
� × 1

2
 . 
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3.6.1  Fe3Pd alloy 
The generalized susceptibility contributed from intra-band takes a value proportional to the DOS at 
the Fermi level for 𝒒𝒒 = 0. Thus, considering the smaller (larger) DOS at the Fermi level in the 
majority-spin (minority-spin) state, this implies a larger contribution from the minority-spin state 
and the data is sometimes presented only for the minority-spin state. Indeed, in all the cases 
investigated here for 𝜒𝜒(𝒒𝒒), the contribution from the minority-spin state 𝜒𝜒↓(𝒒𝒒) is always dominant.  

Figure 7 shows 𝜒𝜒↓(𝒒𝒒)  along the [1, 1, 0]  direction from 𝒒𝒒 = 0  to 𝒒𝒒 = (2π/𝑎𝑎)(1,1,0) . 
𝜒𝜒↓(𝒒𝒒)  takes a maximum around Δ𝐸𝐸F = 0.10  eV at 𝒒𝒒 = (2π/𝑎𝑎)(1/2,1/2,0) . In the more 
precise search, the maximum was determined at Δ𝐸𝐸F = 0.098 eV at the same wave vector 𝒒𝒒 
(see Fig. A1 in Appendix A). In Figs. 8 and 9, the behaviors of 𝜒𝜒(𝒒𝒒) = 𝜒𝜒↑(𝒒𝒒)  + 𝜒𝜒↓(𝒒𝒒), 𝜒𝜒↑(𝒒𝒒), 
and 𝜒𝜒↓(𝒒𝒒) in the BZ are presented as contour maps and line profiles, respectively, at Δ𝐸𝐸F =
0.098  eV. In these figures, the specified 𝑞𝑞𝑧𝑧  is introduced: 𝑞𝑞𝑧𝑧 =  0 , 𝑞𝑞𝑧𝑧 = �2𝜋𝜋

𝑎𝑎
� × 1/4 , and 

𝑞𝑞𝑧𝑧 = �2𝜋𝜋
𝑎𝑎
� × 1/2. The contour maps were drawn within the xy-plane and the line profiles were 

plotted along the [1, 1, 0] direction. As explicitly indicated, contributions of the minority-spin 
state are always dominant, and the contribution from the majority-spin state does not influence to 
its relative distribution in the BZ in so large extent. As seen in Figs. 8 and 9, the second maxima 
are found at around 𝒒𝒒 = (2π/𝑎𝑎)(1/2,0,0) , although, strictly speaking, the position of these 

(a) 

 
     (b)                              (c)  

 
Fig. 9. Profile of the QSGW generalized susceptibility along the [1, 1, 0] direction at Δ𝐸𝐸F =
0.098 eV  in Fe3Pd: (a) total 𝜒𝜒(𝒒𝒒) , (b) majority-spin 𝜒𝜒↑(𝒒𝒒) , and (c) minority-spin 𝜒𝜒↓(𝒒𝒒) 
components at [𝜉𝜉𝑥𝑥 ,  𝜉𝜉𝑦𝑦 , 𝜉𝜉𝑧𝑧]. 
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maxima are not just on it.  
In Appendix B, for the reader’s convenience, the behaviors of 𝜒𝜒(𝒒𝒒) = 𝜒𝜒↑(𝒒𝒒)  + 𝜒𝜒↓(𝒒𝒒) , 

𝜒𝜒↑(𝒒𝒒), and 𝜒𝜒↓(𝒒𝒒) in the BZ are also presented as contour maps and line profiles at Δ𝐸𝐸F = 0, as 
in Figs. 8 and 9.  
 
3.6.2  Fe3Pt alloy 
Figure 10 shows 𝜒𝜒↓(𝒒𝒒)  along the [1, 1, 0]  direction from 𝒒𝒒 = 0  to 𝒒𝒒 = (2π/𝑎𝑎)(1,1,0) . 
𝜒𝜒↓(𝒒𝒒) takes maxima around Δ𝐸𝐸F = 0.03 eV. In the more precise research, the maxima were 
determined at Δ𝐸𝐸F = 0.029 eV at 𝒒𝒒 = (2π/𝑎𝑎)(1/8,1/8,0) (see Fig. A2 in Appendix A). As 
the same for Fe3Pd, in Figs. 11 and 12, the behavior in the BZ is presented as contour maps and 
line profiles, respectively, at Δ𝐸𝐸F = 0.029 eV. Even the second maxima did not appear at around 
𝒒𝒒 = (2π/𝑎𝑎)(1/2,0,0), unlike the case of Fe3Pd. 
 
3.6.3  Effects of spin-orbit interaction in Fe3Pt alloy  
The inclusion of SOI for Fe3Pt modifies the electronic states in vicinity of the Fermi level due to 
a large SOI interaction on Pt atom through the hybridization between Fe and Pt. The modification 
near Fermi level is important in the relation with system stability. The differences introduced by 
SOI are sometimes crucial for explaining spin-dependent electronic properties in Fe3Pt. It is found 
that the energy scale from -0.5 to 0.5 eV around the Fermi level shows noticeable differences 
between the cases with and without SOI. In the case of SOI, as shown in Fig. 13, the peak on the 
Fermi level was observed for the QSGW with SOI. However, the amplitude of the peak is lowered 
compared with the case without SOI. Such phenomena may be related to the redistribution of 
states due to SOI. The set of obtained band energies allows us to evaluate the generalized 
susceptibility 𝜒𝜒(𝒒𝒒) . In Appendix C, the resulting distribution of 𝜒𝜒(𝒒𝒒)  is reported for future 
convenience. This can imply candidates for the modulation wave vector 𝒒𝒒 of FSN.  

 

 
Fig. 10. Profile of the QSGW generalized susceptibility of the minority-spin component 
𝜒𝜒↓(𝒒𝒒)  in Fe3Pt along the [1, 1, 0]  direction from the origin, depending on shift (Δ𝐸𝐸F =
0.01− 0.09 eV) from the Fermi level. 
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15 along the [𝜉𝜉𝑥𝑥 ,  𝜉𝜉𝑦𝑦 , ξ𝑧𝑧] direction for each spin component.  Although the peak value for     (a)                      (b)                    (c)   

 
   (d)                      (e)                    (f)            

 
   (g)                      (h)                    (i) 

 
Fig. 11. QSGW generalized susceptibility at Δ𝐸𝐸F = 0.029 eV in Fe3Pt: total 𝜒𝜒(𝒒𝒒), 
majority-spin 𝜒𝜒↑(𝒒𝒒), and minority-spin 𝜒𝜒↓(𝒒𝒒) components with (a)-(c) within the plane of 
𝑞𝑞𝑧𝑧 = 0; (d)-(f) within 𝑞𝑞𝑧𝑧  = �2𝜋𝜋

𝑎𝑎
� × 1

4
; (g)-(i) within 𝑞𝑞𝑧𝑧 = �2𝜋𝜋

𝑎𝑎
� × 1

2
 . 
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(a) 

 
(b)                              (c) 

    
Fig. 12. Profile of the QSGW generalized susceptibility along the [1, 1, 0] direction at Δ𝐸𝐸F =
0.029 eV  in Fe3Pt: (a) total 𝜒𝜒(𝒒𝒒) , (b) majority-spin 𝜒𝜒↑(𝒒𝒒) , and (c) minority-spin 𝜒𝜒↓(𝒒𝒒) 
components at [𝜉𝜉𝑥𝑥 ,  𝜉𝜉𝑦𝑦, 𝜉𝜉𝑧𝑧]. 
 

 
Fig. 13. Total density of states: QSGW without SOI (solid red lines) and with SOI (dashed 
blue lines) for Fe3Pt. Positive DOS values are for majority-spin state and the negative for 
minority-spin state. 
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4  Discussions  
It is interesting to see the differences between Fe3Pd and Fe3Pt. Regarding the theoretical total 
magnetic moments, the X=Pd case indicated a larger one than that of X=Pt (see Table II). The Fe 
moment for X=Pd is also larger than that for X=Pt, but the X moment has an inverse trend. This 
means that the Pt moment is larger than the Pd one. Regarding the DOS (for example, see Figs. 4 
and 5), the Pt energy levels tend to be deeper than those of the Pd ones. Reflecting such trend, the 
Fe 3d-orbital minority-spin states may be drawn to lower energies for X=Pt and to high energies 
for X=Pd. Namely, the Fe magnetic moment in X=Pd is larger than in X=Pt in consequence of 
the trend of exchange splitting (see Fig. 2). According to this trend between Pt and Pd, the highest 
peaks in the generalized susceptibility (or FSN) appear at the smaller x-concentration in X=Pt and 
at the larger x-concentration in X=Pd.  

Using the rigid band approximation and integrated DOS data, a Fermi energy shift of +0.098 
eV from the Fermi level (Δ𝐸𝐸F = 0.098 eV ) predicts a chemical composition of Fe67.88Pd32.12 
(x=32.12). The analysis of generalized susceptibility data (Figs. 8 and 9), incorporating this Fermi 
energy shift, suggests the potential for a martensitic transformation. The peak observed along 
[𝜉𝜉, 𝜉𝜉, 0] with 𝜉𝜉=1/2 suggests the likelihood of tetragonal distortion due to strong nesting effects. 
As discussed in the previous work [20], the phonon soft mode can couple with the electronic 
instability specified by the modulation wave vector at 𝒒𝒒 = (2π/𝑎𝑎)(1/2,1/2,0). The pronounced 
FSN observed in the generalized susceptibility peaks for Fe67.88Pd32.12 aligns with their predicted 
tendency for tetragonal distortion, as previously discussed in the context of the phase diagram 
[12]. Our results further support the role of FSN in driving martensitic transformations in Fe-Pd 
alloys. 

For the alloy Fe(100–x)Pt(x), the rigid band approximation and integrated DOS data, as for 
the Fe-Pd alloy, the energy shift +0.029 eV from the Fermi level (Δ𝐸𝐸F = 0.029 eV) predicts a 
chemical composition of Fe73.5Pt26.5 (x=26.50). The generalized susceptibility data (Figs. 11 and 
12), reflecting this energy shift, suggests the possibility of structural instability in Fe73.5Pt26.5. The 
peaks observed at 𝒒𝒒 = (2π/𝑎𝑎)(1/8,1/8,0) for this composition indicate a potential tetragonal 
driving by pronounced nesting effects. However, this 𝒒𝒒-vector is much smaller than those of the 
Fe-Pd system obtained here and cannot be connected directly to the tetragonal distortion discussed 
in the experiment [13]. To speculate about this discrepancy, two reasons can be raised as important. 
One may originate from the smallness of 𝒒𝒒 = (2π/𝑎𝑎)(1/8,1/8,0)  which corresponds to a 
longer wavelength. Thus, satellite diffraction peaks of some main peak or small angle diffraction 
line/spot can be expected in the X-ray diffraction measurement. Another one is the SOI. In the 
present work, unfortunately, such interaction was not exactly introduced in the calculation of 
generalized susceptibility.  

In Fe3Pt, the DOS peak related to the band Jahn-Teller effect appears close to the Fermi level 
(see Figs. 2 and 13). As speculated from Fig. C1, if the FSN is caused at 𝒒𝒒 = (2π/𝑎𝑎)(1/2,0,0), 
the multiple instability combined with the vectors of 𝒒𝒒1 = (2π/𝑎𝑎)(1/2,0,0)  and 𝒒𝒒2 =
(2π/𝑎𝑎)(0,1/2,0)  can realize a tetragonal distortion: 𝒒𝒒1 + 𝒒𝒒2 = (2π/𝑎𝑎)(1/2,1/2,0) , as 
obtained in the present work for Fe3Pd. In any way, the advanced inclusion of SOI may be an 
issue that stands against the alloy containing heavy elements.  

This work suggested the instability at x=32.12 for X=Pd and at x=26.50 for X=Pt for the alloy 
Fe(100–x)X(x). According to the rigid band approximation, in which the integration of DOS was 
performed for each spin state, the total magnetic moment was deduced at these instability points: 
8.98 𝜇𝜇B f. u.⁄  (=9.45–0.47) for X=Pd, 9.08 𝜇𝜇B f. u.⁄  (=9.16–0.08) for X=Pt. 
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Associated with the martensitic transformation, the band Jahn-Teller effect usually plays one 
of the important roles. The band energy states located at the Fermi level take an energy splitting 
below and above the Fermi energy at the transformation, resulting in a local atomic distortion. 
Such a structure is determined by the electronic structure of high symmetry phase, namely, the 
cubic phase in this work. As obtained in the results of PDOS (Figs. 4 and 5), the 𝑑𝑑𝑦𝑦𝑦𝑦 + 𝑑𝑑𝑧𝑧𝑧𝑧 and 
𝑑𝑑𝑥𝑥2−𝑦𝑦2  orbitals on the Fe take part in the expected local structural change. Speculating the 
distances of the Fe with the neighboring Fe atoms (see Fig. 1), the 𝑑𝑑𝑦𝑦𝑦𝑦 + 𝑑𝑑𝑧𝑧𝑧𝑧 tends to take the 
anti-bonding hybridization and the 𝑑𝑑𝑥𝑥2−𝑦𝑦2 remains non-bonding after the transformation. These 
are similar to the energy splitting of Ni 3d 𝑒𝑒𝑔𝑔 −orbitals located on the Fermi level in the cubic 
phase in Ni2MnGa [18], separating to the above (𝑑𝑑𝑥𝑥2−𝑦𝑦2) and below (𝑑𝑑3𝑧𝑧2−𝑟𝑟2) the Fermi level in 
the tetragonal phase.  
 
5  Conclusions  
The analyses of the electronic structure, such as total and partial DOSs, band dispersion curves, 
and generalized susceptibility, were investigated in the cubic regular alloy Fe3X (X=Pd, Pt) by 
using quasi-particle self-consistent GW (QSGW) method. For both alloys, the result of DOS 
indicated peak structures at vicinity of the Fermi level in the minority-spin state, attributing to the 
flat band nature around the saddle points in the BZ. The accurate procedure of QSGW provided 
the peaks located at higher energy with respect to the Fermi level, although they have been 
observed below the Fermi level in the GGA. From the combined analysis of generalized 
susceptibility and rigid band approximation, the expected instability by lattice modulation was 
found to occur at the system containing more electrons compared with the stoichiometric alloy. 
This occurrence corresponds to 32.12 atomic % Pd (x=32.12) for Fe3Pd or 26.50 atomic % Pt 
(x=26.50) for Fe3Pt. These concentrations obtained at present work agree well with those of the 
available experimental values for the corresponding alloys. The profiles of generalized 
susceptibility indicated peak at the modulation wave vector 𝒒𝒒 = (2π/𝑎𝑎)(1/2,1/2,0)  for 
x=32.12 in Fe(100–x)Pd(x) and 𝒒𝒒 = (2π/𝑎𝑎)(1/8,1/8,0) for x=26.50 in Fe(100–x)Pt(x).  

The location of the Fermi energy determined in QSGW was moved by the shift of about 0.1 
eV for both X=Pd and Pt, compared with those in GGA. Such accuracy of energy level 
determination in the electronic structure calculation may enable us to discuss a quantitative 
position of x-concentration regarding the boundary of the martensitic phase transition. The 
electronic structure calculation QSGW may provide such kind of accuracy in metallic systems. 
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Appendix A 
The precise search of maximum value on the generalized susceptibility of the minority-spin 
component 𝜒𝜒↓(𝒒𝒒) is shown in Figs. A1 and A2 for Fe3Pd and Fe3Pt, respectively. 
 

 

  

 
Fig. A1. Profile of the QSGW generalized susceptibility of the minority-spin component 
𝜒𝜒↓(𝒒𝒒)  in Fe3Pd along the [1, 1, 0]  direction from the origin, depending on shift (Δ𝐸𝐸F =
0.095− 0.105 eV) from the Fermi level. 

 
Fig. A2. Profile of the QSGW generalized susceptibility of the minority-spin component 
𝜒𝜒↓(𝒒𝒒)  in Fe3Pt along the [1, 1, 0]  direction from the origin, depending on shift (Δ𝐸𝐸F =
0.025− 0.035 eV) from the Fermi level. 
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Appendix B 
The profiles of generalized susceptibility for the electronic structures in the self-consistent 
solutions (Δ𝐸𝐸F = 0): contour maps (Fig. B1) and line profiles (Fig. B2) in Fe3Pd and contour 
maps (Fig. B3) and line profiles (Fig. B4) in Fe3Pt.  
 
 
 

(a)               (b)                        (c)    

 
     (d)                     (e)                        (f)            

 
     (g)                     (h)                        (i) 

 
Fig. B1. QSGW generalized susceptibility of the total 𝜒𝜒(𝒒𝒒 ), majority-spin 𝜒𝜒↑(𝒒𝒒) , and 

minority-spin 𝜒𝜒↓(𝒒𝒒)  components in Fe3Pd with (a)-(c) with 𝑞𝑞𝑧𝑧 = 0 ; (d)-(f) with 𝑞𝑞𝑧𝑧 =

�2𝜋𝜋
𝑎𝑎
� × 1

4
; (g)-(i) with 𝑞𝑞𝑧𝑧 = �2𝜋𝜋

𝑎𝑎
� × 1

2
. 



Electronic structures in magnetic shape memory alloys Fe3X (X=Pd, Pt) 
 

106 

 

 
 
 
 

(a)  

 
                 (b) 

 
(c) 

 
Fig. B2. Profile of the QSGW generalized susceptibility along the [1, 1, 0]  direction in 
Fe3Pd: (a) total 𝜒𝜒(𝒒𝒒), (b) majority-spin 𝜒𝜒↑(𝒒𝒒), and (c) minority-spin 𝜒𝜒↓(𝒒𝒒) components at 
[𝜉𝜉𝑥𝑥 , 𝜉𝜉𝑦𝑦, 𝜉𝜉𝑧𝑧]. 
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(a)             (b)                      (c)   

 
   (d)                     (e)                      (f)            

 
   (g)                     (h)                     (i) 

 
Fig. B3. QSGW generalized susceptibility of the total 𝜒𝜒(𝒒𝒒 ), majority-spin 𝜒𝜒↑(𝒒𝒒) , and 
minority-spin 𝜒𝜒↓(𝒒𝒒)  components in Fe3Pt with (a)-(c) with 𝑞𝑞𝑧𝑧 = 0 ; (d)-(f) with 𝑞𝑞𝑧𝑧 =
�2𝜋𝜋
𝑎𝑎
� × 1

4
; (g)-(i) with 𝑞𝑞𝑧𝑧 = �2𝜋𝜋

𝑎𝑎
� × 1

2
 . 
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(a) 

 
(b) 

    
                    (c) 

    
Fig. B4. Profile of the QSGW generalized susceptibility along the [1, 1, 0] direction in 
Fe3Pt: (a) total 𝜒𝜒(𝒒𝒒), (b) majority-spin 𝜒𝜒↑(𝒒𝒒), and (c) minority-spin 𝜒𝜒↓(𝒒𝒒) components at 
[𝜉𝜉𝑥𝑥 , 𝜉𝜉𝑦𝑦, 𝜉𝜉𝑧𝑧]. 
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Appendix C 
Figures C1 presents the contour maps of generalized susceptibility 𝜒𝜒(𝒒𝒒) for the SOI version 
without Fermi energy shift (Δ𝐸𝐸F = 0) in Fe3Pt. In the evaluation, all of the eigenvalues combined 
with both spin states were used. Therefore, the resulting values are larger in Fig. C1 and it is not 
possible to separate the majority- and minority-spin components. The peaks for the susceptibility 
𝜒𝜒(𝒒𝒒) exhibit broadening compared to without SOI. The resulting profile implies large values 
near [𝜉𝜉, 0, 0] with the 𝜉𝜉 = 1/2 and [𝜉𝜉, 𝜉𝜉, 𝜉𝜉] with the 𝜉𝜉 = 1/4. Since these peaks are broad, 
further studies are needed to determine a definitive conclusion on the property of electronic 
instability.  
 

   (a)                     (b)                     (c) 

 
Fig. C1. QSGW Generalized susceptibility of the total 𝜒𝜒(𝒒𝒒) with SOI in Fe3Pt with (a) 𝑞𝑞𝑧𝑧 =
�2𝜋𝜋
𝑎𝑎
� × 1

4
; (b) 𝑞𝑞𝑧𝑧 = �2𝜋𝜋

𝑎𝑎
� × 1

2
; (c) 𝑞𝑞𝑧𝑧 = 0. 
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