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Abstract We present a new characterization of Sobolev spaces on the sphere. We follow
the idea of Barceló et al. (2020) and develop the square function they used to characterize
the Sobolev spaces. We discuss in detail the weight and the range of the averaging in the
definition of the square function, and we find it possible to limit the domain of the averaging
within a local coordinate of the sphere.
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1 Introduction

Several characterizations of Sobolev spaces without using the notions of distributional derivatives
have been introduced by many researchers. Among them, we are interested in the work by Alabern
et al. [2] on Rd (d ≥ 1) by using the following notion of the square function for α ∈ (0,2):

Sα( f )2(x) :=
ˆ ∞

0

∣∣∣∣ fB(x,t)− f (x)
tα

∣∣∣∣2 dt
t
, x ∈ Rd .

Here f is a locally integrable function on Rd and fB(x,t) is the averaging of f on the open ball with
center x and radius t, that is,

fB(x,t) :=
1

|B(x, t)|

ˆ
B(x,t)

f (y)dy

and |B(x, t)| is the Lebesgue measure of B(x, t).

Theorem 1.1 ([2, Theorem 1 and 3]). For 1 < p < ∞ and 0 < α < 2, the following are equivalent:

(1) f ∈W α,p
(
Rd
)
. (2) f ∈ Lp

(
Rd
)

and Sα( f ) ∈ Lp
(
Rd
)
.
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Later Barceló et al. [3] got a similar result for the Sobolev spaces Hα (Sd−1
)

:=W α,2
(
Sd−1

)
on the d −1 dimensional sphere Sd−1 (d ≥ 2), introducing the following square function:

Sα( f )2(ξ ) :=
ˆ π

0

∣∣∣∣ fC(ξ ,t)− f (ξ )
tα

∣∣∣∣2 dt
t
, ξ ∈ Sd−1.

Here f is an integrable function on Sd−1 and fC(ξ ,t) is the averaging of f on the spherical cap
C(ξ , t) with center ξ and radius t ∈ (0,π), that is,

fC(ξ ,t) :=
1

|C(ξ , t)|

ˆ
C(ξ ,t)

f (τ)dσ(τ), C(ξ , t) := {η ∈ Sd−1 : ξ ·η ≥ cos t}, (1.1)

where |C(ξ , t)| is measured by the uniform surface measure σ on Sd−1 induced from the Lebesgue
measure on Rd .

Theorem 1.2 ([3, Theorem 1.1]). For 0 < α < 2, the following are equivalent:

(1) f ∈ Hα (Sd−1
)
. (2) f ∈ L2

(
Sd−1

)
and Sα( f ) ∈ L2

(
Sd−1

)
.

The purpose of this paper is to extend Theorem 1.2 by generalizing the concept of averaging.
For a fixed ξ ∈ Sd−1, we introduce the Euclidean angle θ ∈ [0,π] between τ ∈ Sd−1 and ξ . Then
the uniform surface-area measure σ on Sd−1 is expressed as

dσ = dσ(θ ,τ ′) = sind−2 θdθdσ ′,

where τ ′ ∈ Sd−2 and σ ′ is the uniform surface-area measure of Sd−2, cf [1, (1.17)].

Definition 1.3 (The generalized averaging). Let T ∈ (0,π] and

ρ ∈ L∞ (0,T ) satisfies ρ ≥ 0 a.e. and
ˆ T

0
ρ(θ)dθ > 0. (1.2)

Then, for an integrable function f on Sd−1 and t ∈ (0,T ], we define

Aρ
t f (ξ ) := z−1

t

ˆ
C(ξ ,t)

f (θ ,τ ′)ρ
(

T
t

θ
)

dσ(θ ,τ ′)

as the generalized averaging of f around ξ with radius t, where zt is chosen in order to satisfy

z−1
t

ˆ
C(ξ ,t)

ρ
(

T
t

θ
)

dσ(θ ,τ ′) = 1,

that is,

zt =
∣∣Sd−2∣∣ t

T

ˆ T

0
sind−2

(
tθ
T

)
ρ(θ)dθ .

We note that, thanks to the assumptions (1.2) on ρ , the generalized averaging Aρ
t is well-defined

for f ∈ L2
(
Sd−1

)
. We also note that the averaging fC(ξ ,t) defined in (1.1) used in Barceló et al.[3]

is nothing but the case when T = π and ρ(θ)≡ 1 for 0 ≤ θ ≤ π .

Definition 1.4 (The generalized square function). Under Definition 1.3 and for 0 < α < 2, we call
the following Sρ,T

α ( f )(ξ ) the generalized square function for f :

Sρ,T
α ( f )2(ξ ) :=

ˆ T

0

∣∣∣∣Aρ
t f (ξ )− f (ξ )

tα

∣∣∣∣2 dt
t
.
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Theorem 1.5 (Main Theorem). For fixed T ∈ (0,π], ρ ∈ L∞ (0,T ) satisfying (1.2), and 0 < α < 2,
the following are equivalent:

(1) f ∈ Hα (Sd−1
)
. (2) f ∈ L2

(
Sd−1

)
and Sρ,T

α ( f ) ∈ L2
(
Sd−1

)
.

The motivation why we introduce the above generalization is two folds. One is to make more
general averaging possible in the characterization of Sobolev spaces by an elementary argument
via introducing ρ . Indeed, similar weight functions are introduced in [4, Cor 5.2] for Rd cases, for
example. Another motivation is toward a similar characterization of the Sobolev spaces on com-
pact manifolds. By introducing T < π , we are able to discuss this problem in a local coordinate
of Sd−1. One of the motivation of Barceló et al. is to extend the results of Alabern et al. [2] to the
case on manifolds and they consider their results as a first step toward the purpose [3, p.2]. We
think that our result is the next step to it.

We end the introduction with a remark that Alabern et al. [2] and Barceló et al. [3, p.2] con-
sidered a more general setting that includes higher-order derivatives: W α,p

(
Rd
)

and Hα (Sd−1
)

for 1 < p < ∞ and α ≥ 2. In this paper, however, we concentrate on the case 0 < α < 2 in or-
der to simplify the explanation of the main ideas of our generalization. We will present a full
generalization elsewhere in the near future.

The contents of this paper is as follows: in Section 2 we will summarize the settings of our
paper, e.g., several facts on the spherical harmonics and the definition of Sobolev spaces using
spherical harmonics. In Section 3, we will prove the main theorem (Theorem 1.5).

2 Overview of notions and notation

In this paper, we will follow [3] for notation in general. All functions take values in the set of
complex numbers C. The symbol A ∼ B denotes A <∼ B and A >∼ B, where A <∼ B means that there
exists a constant C > 0 independent of the parameters attached to the quantities A and B such that
A ≤ CB. If we want to clarify the dependence of the constant C on some parameters, we write
<∼d,ρ,T and ∼d,ρ ,T , etc. For l = 0,1,2, ...,

Hd
l := span{Y j

l : 1 ≤ j ≤ ν(l)}

is the space of all spherical harmonics of degree l on Sd−1, where {Y j
l } is an orthonormal basis in

L2(Sd−1) and ν(l) = dimCHd
l , which is known to satisfy ν(l) = O(ld−2) for l ≫ 1 [1, p.16 and

p.19]. Here we recall the following lemma:

Lemma 2.1 ([3, Lemma 3.1], see also [1, Theorem 2.8]). Let ξ ∈ Sd−1 and L ∈ Hd
l such that

L(Rη) = L(η) for all rotations R in Rd such that R(ξ ) = ξ . Then

L(η) = L(ξ )Pl,d(η ·ξ ),

where Pl,d is the Legendre polynomial of degree l in d dimensions.

The explicit formula for Pl,d is known [1, (2.19)]:

Pl,d(s) = l!Γ
(

d −1
2

) [l/2]

∑
k=0

(−1)k (1− s2)ksl−2k

4kk!(l −2k)!Γ(k+ d−1
2 )

. (2.1)

It holds that
Pl,d(1) = 1 for l = 0,1, · · · .
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For later use, we recall the following estimates: for every t ∈ [−1,1], it holds that

|P(k)
l,d (t)| ≤ P(k)

l,d (1)∼ lk(l +d −2)k ∼ l2k (2.2)

for k ∈ N∪{0}, see [3, (18), (44)] and [1, pp.58-59]. We also recall the so-called addition theorem
[1, Theorem 2.9]

ν(l)

∑
j=1

Y j
l (η)Y j

l (τ) =
ν(l)
|Sd−1|

Pl,d(η · τ).

As a consequence of this, the following reproducing formula holds for Yl ∈Hd
l [1, p.23]:

Yl(ξ ) =
ν(l)
|Sd−1|

ˆ
Sd−1

Pl,d(ξ ·η)Yl(η)dσ(η). (2.3)

Since the spherical harmonic Y j
l is an eigenfunction of the Laplace-Beltrami operator −∆ sat-

isfying
−∆Y j

l = l(l +d −2)Y j
l , (2.4)

it holds that

∥∇ f∥2
L2(Sd−1) =

∞

∑
l=0

l(l +d −2)(
ν(l)

∑
j=1

| f̂l j|2)

for f ∈ C∞(Sd−1) satisfying f = ∑∞
l=0 ∑ν(l)

j=1 f̂l jY
j

l . Here f̂l j :=
´

Sd−1 fY l
j dσ and ∇ is the gradient

operator on Sd−1, see [1, (3.3), (3.6), Proposition 3.3] for definitions. It is known that

ν(l)

∑
j=1

| f̂l j|2 = ∥
ν(l)

∑
j=1

f̂l jY
j

l ∥
2
L2(Sd−1) = O(ld−2k−2)

if f ∈Ck(Sd−1)([1, (3.26)]). Using the relation (2.4), we define

(−∆)
α
2 f :=

∞

∑
l=0

{l(l +d −2)}
α
2 (

ν(l)

∑
j=1

f̂l jY
j

l ) in L2
(

Sd−1
)
,

that is,

∥(−∆)
α
2 f∥2

L2(Sd−1) =
∞

∑
l=0

{l(l +d −2)}α (
ν(l)

∑
j=1

| f̂l j|2) (2.5)

for f ∈ C∞(Sd−1). Especially, ∥(−∆) 1
2 f∥L2(Sd−1) = ∥∇ f∥L2(Sd−1). Following [3], we define

Hα(Sd−1) as the completion of C∞(Sd−1) with respect to the norm

∥ f∥2
Hα (Sd−1) :=

∞

∑
l=0

ν(l)

∑
j=1

(
1+ l

1
2 (l +d −2)

1
2

)2α
| f̂l j|2(

=
∥∥∥((I +(−∆)

1
2

)α
f
∥∥∥2

L2(Sd−1)

)
,

see also [1, Definition 3.23].
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3 Proof of Main Theorem (Theorem 1.5)

3.1 Preliminaries

We start from establishing the representation formula of Aρ
t f and ∥Sρ,T

α ∥L2(Sd−1) in terms of spher-
ical harmonics.

Lemma 3.1. For every ρ satisfying (1.2), T ∈ (0,π), and t ∈ (0,T ), the numbers

mρ
l,t :=

|Sd−2|
zt

· t
T

ˆ T

0
Pl,d

(
cos

t
T

θ
)

sind−2
( t

T
θ
)

ρ(θ)dθ .

form a bounded sequence {mρ
l,t}∞

l=0 ⊂ R satisfying the following representation for every f =

∑∞
l=0 ∑ν(l)

j=1 f̂l jY
j

l ∈ L2
(
Sd−1

)
:

Aρ
t f =

∞

∑
l=0

mρ
l,t

ν(l)

∑
j=1

f̂l jY
j

l in L2
(

Sd−1
)
.

Proof. It is obvious that mρ
l,t is bounded by some constant independent of l = 0,1,2, · · · from (2.2).

Therefore it is enough to see that Aρ
t Yl = mρ

l,tYl for any Yl ∈Hd
l . Since we have (2.3) for ξ ∈ Sd−1,

it holds that

Aρ
t Yl(ξ ) =

ˆ
Sd−1

L(η)Yl(η)dσ(η),

where

L(η) :=
1
zt
· ν(l)
|Sd−1|

ˆ
C(ξ ,t)

Pl,d(τ ·η)ρ
(

T
t

θ
)

dσ(τ) ∈Hd
l .

Then, for a rotation R in Rd satisfying R(ξ ) = ξ , it holds that

L(Rη) =
1
zt
· ν(l)
|Sd−1|

ˆ
C(ξ ,t)

Pl,d(R−1τ ·η)ρ
(

T
t

θ
)

dσ(τ)

=
1
zt
· ν(l)
|Sd−1|

ˆ
C(Rξ ,t)

Pl,d(τ ·η)ρ
(

T
t

θ
)

dσ(τ) = L(η).

Therefore, applying Lemma 2.1, we get

Aρ
t Yl(ξ ) = L(ξ )

ˆ
Sd−1

Pl,d(η ·ξ )Yl(η)dσ(η) = mρ
l,tYl(ξ ),

where

mρ
l,t = z−1

t

ˆ
C(ξ ,t)

Pl,d(τ ·ξ )ρ
(

T
t

θ
)

dσ(τ)

=
|Sd−2|

zt
· t

T

ˆ T

0
Pl,d

(
cos

t
T

θ
)

sind−2
( t

T
θ
)

ρ(θ)dθ .

Lemma 3.2. For f = ∑∞
l=0 ∑ν(l)

j=1 f̂l jY
j

l ∈ L2
(
Sd−1

)
, it holds that

∥Sρ,T
α ( f )∥2

L2(Sd−1) =
∞

∑
l=1

Iρ,T
α (l)

(
ν(l)

∑
j=1

| f̂l j|2
)
,
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where

Iρ,T
α (l) :=

ˆ T

0
|Mρ

l,t |
2 dt
t2α+1 ,

Mρ
l,t :=

|Sd−2|
zt

· t
T

ˆ T

0

{
Pl,d(1)−Pl,d

(
cos

t
T

θ
)}

sind−2
( t

T
θ
)

ρ(θ)dθ .

Proof of Lemma 3.2. From Lemma 3.1, it holds that

Aρ
t f (ξ )− f (ξ ) =

∞

∑
l=1

ν(l)

∑
j=1

(mρ
l,t −1) f̂l jY

j
l (ξ ) =

∞

∑
l=1

ν(l)

∑
j=1

(−Mρ
l,t) f̂l jY

j
l (ξ )

since mρ
0,t = 1. Then we have the conclusion from Fubini’s theorem and the orthogonality of {Y j

l }
in L2

(
Sd−1

)
.

Theorem 1.5 follows from (2.5) and the following fact:

Iρ,T
α (l) =

ˆ T

0
|Mρ

l,t |
2 dt
t2α+1 ∼d,ρ,T l2α ∼d,ρ,T {l(l +d −2)}α .

The proof of this fact is divided into the following Lemma 3.6 and Lemma 3.8, which give the
upper and lower bound, respectively. We start from the following elementary lemma:

Lemma 3.3. For every ρ ∈ L∞ (0,T ) satisfying (1.2), there exists [tρ ,Tρ ]⊂ [0,T ]∩(0,π) such that

ˆ Tρ

tρ
ρ(θ)dθ > 0.

Proof. Suppose that the conclusion does not hold. Then
´ T−1/N

1/N ρ(θ)dθ = 0 for every sufficiently

large N ∈N, which leads to
´ T

0 ρ(θ)dθ = 0 because ρ ∈ L∞ (0,T ). This contradicts the assumption´ T
0 ρ(θ)dθ > 0.

Next, we prepare the following lemma concerning the general behavior of zt as t → 0.

Lemma 3.4. For every ρ ∈ L∞ (0,T ) satisfying (1.2), it holds that

zt ∼d,ρ,T td−1 (3.1)

uniformly for every t ∈ [0,T ].

Proof. The upper estimate follows from the fact that sinθ ≤ θ for θ ≥ 0. The lower estimate
follows from Lemma 3.3. Indeed, since sinθ ≥ sinTρ

Tρ
θ for θ ∈ [0,Tρ ], it follows that

zt ≥
∣∣Sd−2∣∣(sinTρ

Tρ

)d−2

·
( t

T

)d−1ˆ Tρ

tρ
θ d−2ρ(θ)dθ ≥C2(ρ)td−1

for every t ∈ [0,T ].
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3.2 Upper bound

First we prepare a rough estimate for Mρ
l,t .

Lemma 3.5. For every l ∈ N and t ∈ (0,T ], it holds

0 ≤ Mρ
l,t ≤ 2. (3.2)

Proof. From (2.2), we get

0 ≤ Pl,d(1)−Pl,d

(
cos

t
T

θ
)
≤ 2.

Then the conclusion follows.

Lemma 3.6. Suppose that ρ ∈ L∞ (0,T ) satisfies (1.2). Then for l ∈ N, it holds that

Iρ,T
α (l) <∼d,ρ,T l2α .

Proof. In order to get the conclusion, the estimate (3.2) is not enough around t = 0. So we study
the fine behavior of Mρ

l,t around t = 0.
Using the mean value theorem and (2.2) for k = 1, we have

Mρ
l,t

<∼d l2 |Sd−2|
zt

· t
T

ˆ T

0

{
1− cos

( t
T

θ
)}

sind−2
( t

T
θ
)

ρ(θ)dθ .

Here we note that {
1− cos

( t
T

θ
)}

sind−2
( t

T
θ
)
=

sind ( t
T θ
)

1+ cos
( t

T θ
) ≤ ( t

T
θ
)d

.

Then, by using (3.1), we get

0 ≤ Mρ
l,t

<∼d,ρ,T l2t2 for 0 < t ≤ T .

Take a ∈ (0,T ) and set tl := a
l for l ∈ N. Then al ≤ T holds for every l ∈ N. Therefore we get

Iρ,T
α (l) =

ˆ T

0
|Mρ

l,t |
2 dt
t2α+1 ≤

ˆ tl

0
|Mρ

l,t |
2 dt
t2α+1 +

ˆ π

tl
|Mρ

l,t |
2 dt
t2α+1

<∼d,ρ,T l4t4−2α
l + t−2α

l ∼d,ρ,T l2α .

3.3 Lower bound

We start from preparing another estimates of Pl,d(s).

Lemma 3.7. Set

kl,d :=

{
1
2 (l = 1),

d+1
(l+d−1)(l−1) (≤ 1) (l ≥ 2).

Then, for every ε ∈ (0,1), it holds that

P′
l,d(s)≥ (1− ε)P′

l,d(1)> 0 for 1− εkl,d ≤ s ≤ 1.
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Proof. The conclusion is obvious for l = 1 since P1,d(s) = s. Suppose l ≥ 2. The mean value
theorem and (2.2) for k = 2 give us

P′
l,d(s)≥ P′

l,d(1)−P(2)
l,d (1)(1− s).

From (2.1), we have
P′

l,d(1)

P(2)
l,d (1)

=
d +1

(l +d −1)(l −1)
= kl,d ≤ 1

for l ≥ 2. Therefore, for

s ≥ 1− ε
P′

l,d(1)

P(2)
l,d (1)

= 1− εkl,d ,

it holds that

P′
l,d(s)≥ P′

l,d(1)−P(2)
l,d (1)(1− s)≥ (1− ε)P′

l.d(1)> 0.

Lemma 3.8. Suppose that ρ ∈ L∞ (0,T ) satisfies (1.2). Then

Iρ,T
α (l) >∼d,ρ,T l2α .

Proof. We use Lemma 3.7 with ε = 1
2 and take a(l)≥ 0 that satisfies

cosa(l) = 1−
kl,d

2
.

Since kl,d ≤ 1, we may assume that a(l)≤ π/3. Moreover we may assume

a(l)∼
√

kl,d ∼ {l(l +d −2)}−
1
2 ∼d l−1.

Therefore we get

Mρ
l,t

>∼d l2 · |S
d−2|
zt

· t
T

ˆ min(T,a(l)T/t)

0

{
1− cos

( t
T

θ
)}

sind−2
( t

T
θ
)

ρ(θ)dθ

from the mean value theorem, Lemma 3.7 with ε = 1
2 , and (2.2). Moreover, for t satisfying

min(T,a(l)T/t)≥ Tρ ⇔ t ≤ T
Tρ

a(l), (3.3)

where Tρ > 0 is in Lemma 3.3, it holds that
ˆ min(T,a(l)T/t)

0

{
1− cos

( t
T

θ
)}

sind−2
( t

T
θ
)

ρ(θ)dθ

≥ 1
2

ˆ Tρ

tρ
sind

( t
T

θ
)

ρ(θ)dθ >∼d,ρ ,T td
ˆ Tρ

tρ
θ d ρ(θ)dθ >∼d,ρ,T td .

Using (3.1), we get

Mρ
l,t

>∼d,T,ρ l2t2

for t in the range (3.3). Therefore it follows that

Iρ,T
α (l) =

ˆ T

0

∣∣∣Mρ
l,t

∣∣∣2 dt
t2α+1 ≥

ˆ T
Tρ a(l)

0

∣∣∣Mρ
l,t

∣∣∣2 dt
t2α+1

>∼d,ρ,T l4
ˆ T

Tρ a(l)

0
t3−2α dt = l4

{
T
Tρ

a(l)
}4−2α

>∼d,ρ,T l2α .
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