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Abstract We reduce the computational cost of the bottleneck contraction in the higher-
order tensor renormalization group (HOTRG) by using the singular value decomposition.
To confirm the effectiveness of the proposed technique, we examine the HOTRG with or
without the proposed technique by using the square lattice Ising model at criticality. Then,
we find that the proposed method provides the consistent results with the original HOTRG
while the computational cost and the elapsed time are reduced. Therefore, we conclude that
the performance of the proposed method is better than that of the original one.
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1 Introduction

Tensor network (TN) methods are very useful tools to study quantum and classical many-body
systems [1,2]. By using the methods, one can calculate a wave function and a partition function of
a lattice system. There are remarkable properties of TN methods. For example, they can handle a
large volume system easily, and avoid the sign problem which occurs in some lattice models when
using the Monte Carlo methods. Therefore, we expect that we can explore the models which have
the sign problem by using the TN methods.

Tensor renormalization group (TRG) [3] is the one of the TN methods by which one can cal-
culate the partition function of a two-dimensional classical lattice model. The concept of TRG
is that the tensor network of the partition function is transformed into one which has less num-
bers of tensors by using the singular value decomposition (SVD). By extending TRG, various TN
methods have been proposed since it was introduced [4—18], and there are some algorithms which
allow us to deal with arbitrary-dimensional systems. Higher-order tensor renormalization group
(HOTRG) [6] is one of them and its important feature is to use the higher-order SVD. However, the
computational cost of the HOTRG turns out to be worse when the dimension of the lattice model
becomes large. The computational cost of the HOTRG is O(y*/~!), where y is the bond dimen-
sion and d is the dimension of the system. The most time-consuming calculation in the HOTRG
is the contraction for making a coarse-grained tensor since one has to deal with a lot of tensors’
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bonds in this calculation. To solve this problem, anisotropic tensor renormalization group [16,17]
and triad tensor renormalization group [18] have been proposed and they can significantly reduce
the computational cost for the high-dimensional system compared to the HOTRG, though the ac-
curacies of the results obtained by using the algorithms are worse than that of the HOTRG with
the same bond dimension.

In this paper, we focus on the HOTRG and reduce the computational cost of the algorithm by
applying the SVD to the tensor in the bottleneck contraction. We compare the original HOTRG
to the HOTRG with the proposed technique by using the square lattice Ising model at criticality.
Then, we find that the proposed method provides the consistent results with the original HOTRG
while the computational cost and the elapsed time are reduced. We conclude that the performance
of the proposed method is better than that of the original one especially when ) becomes larger.

The rest of this paper is organized as follows. In Sec. 2, we review the original HOTRG
algorithm for a square lattice system. In Sec. 3, the proposed contraction technique is explained.
In Sec. 4, we present numerical results of the square lattice Ising model for a comparison between
the original HOTRG and the HOTRG with the proposed technique, and discuss their performances.
A summary and outlooks are given in Sec. 5.

2 Higher-order tensor renormalization group

In this section, we review the HOTRG [6] for a square lattice model. First of all, we rewrite the
partition function of the system in terms of a tensor network as

Z= TrHT (init) (2.1)

! xoxl)’())l ’

where Ti(init) is an initial tensor, i runs all lattice sites, and Tr means summing up all the bond
indices of the initial tensors. Then, we execute the coarse graining of the tensor network to reduce
the degrees of freedom by using the HOTRG [6]. The whole flow of the HOTRG is shown in
Figure 1. There are two steps in the HOTRG, making the isometries Us and inserting them in
the tensor network [Fig. 1(a)], and contracting two T's and two Us [Fig. 1(b)]. First, to obtain the
isometry U, two T's are contracted in the following ways,

X
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Figure 1: The flow of the HOTRG. (a) Making the isometries Us and inserting them in the tensor
network. (b) Contracting two T's and two U's to obtain 7”.

where T is the y x x x x x x tensor !. Next, K and L are contracted to M, and then K’ and L’ are
contracted to N as

X
Myoyzioy”z = Z Kmyofly”oLXIyzfly"z» (2.6)
x1,x1=1
X
— ! !
N)’IySfli@ - Z leylfly"ll‘xlygil)?y (27)
x1 %=1

IEven if the bond dimensions of the tensor T are smaller than ¥, one can implement the contractions and decompo-
sitions of the tensors in HOTRG similarly.
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Then, one implements the SVD or the eigenvalue decomposition to M and N as,

2

X

Myiy,505, = Z U{L}yoyziA{L}iiU{L}yoyzi7 (2.8)
i=1
XZ

Nyiyssngs = Z UiRiyiys jARY i UR} 53 2.9)
j=1

where the singular values, Ays, are ordered such that Ap i > Ay >0 (k < 1), and evaluates
€1, & defined by

er=Y Awyi (2.10)
i>x

& = XA{R}jj. (2.11)
J>X

If & < &, then we set the isometry U = Uy, which is truncated by keeping the index i corre-
sponding to the largest ¥ singular values. Otherwise U = Uy, truncated in the same way as Uy ).
Then, the isometries Us are inserted in the tensor network [see Fig. 1(a)].

As second step, T and U are contracted in the following two ways to obtain A and B as,

X
Asoxiyoysy|, = Z Tioxiyon Uyiyay, s (2.12)
=1
X
wazyowa) = Z Tiixoy2s Uyoyzyé‘ (2.13)

»n=1
Then A and B are contracted to make a coarse-grained tensor, 77,
X
/

Txoxz)’{)y’l = Z Axoxlyoysy’l BX1X2yoy3y6'
X1,Y0,y3=1

(2.14)

The computational cost of making U is O(x°) and that of the contraction of four tensors is
O(yx"). Therefore, the latter part is the bottleneck in the HOTRG.

3 Cost reduction of the bottleneck contraction in the HOTRG

In this section, we explain how to apply the SVD to the tensor 7" and reduce the computational
cost of the bottleneck contraction part in the HOTRG, Eq. (2.14). The arrow named (a) of Figure 2
represents executing Eq. (2.14) and the flow of the proposed technique can be seen from (b) to (c)
of Figure 2. First, we decompose T by implementing the truncated SVD with the bond dimension

X (X < 2%p < X7 as,

Xp
onmyl ~ ZXXIJ/O’ISMYXO)’IH

n=1

Xp
= Z CxyonDxgyins @3.1)

n=1

where

Cxlyon = SnnXxlyom (32)

onYlﬂ = SnﬂYxoym' (3.3)
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Figure 2: The way to implement the SVD to the tensor T in the bottleneck contraction of the
HOTRG. (a) The contraction of two T's and two U's in the HOTRG. (b) T is decomposed to C and
D. (c) The contractions shown in Eq. (3.4)—(3.6) are executed and 7" is obtained.

Then, we replace Eq. (2.12)—(2.14) with the following calculations,

X
li
Ax0y3y n— Z DXOyI"Uylysy'l’ (3.4)
yi=l1
X
/ —
BXzyayO Z Txlxwzya < yoyzybcxlyon) ) (35)
X1 y07}’2*1
V4
!
Xoxzyoyl Z Z Xoy3yin XZ}3y0n ~ Y:coxzy{,y/l' (3.6)
y3=1n=1

The computational cost of this alternative method to obtain 7", which is the approximation of 7"
in Eq. (2.14), is O(xpxs). If xp < %2, then the computational cost of this part becomes less than

o(x).

4 Numerical results

In this section, we show the numerical results of the 2!° x 2! Ising model at criticality with the
periodic boundary condition in order to confirm the effectiveness of the proposed technique 2. The
initial tensor of the Ising model on the square lattice at the temperature 7 = 1/ is given as

xol)lflllgoyl — Z 51745‘1’6”5SPWPX0W!]X| W”YOVVS)’H (4'1)
p.g;r,s=1
where
W Wi Wi | \/coshB \/sinhB 42)
[ War Wa | | \JcoshB —y/sinhf | '

2The spectrum of the tensor T decays the most slowly and Xp should be the largest at criticality. Therefore, it is
enough to investigate the performance of the proposed algorithm only at the critical point since the computational cost
is the maximum.
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Figure 3: The relation between y and & of the original HOTRG and the proposed method when
Scut changes. We use the 2! x 21 Ising model at criticality with the periodic boundary condition.

To see the accuracy of the free energy, the relative error of it is defined by

f B f exact
O = |— 2=
f exact

where f is the free energy given by the HOTRG with or without the proposed technique, and fexact
is the exact value obtained by the Onsager’s solution [19]. The free energy of 2! x 2! Ising model
can be obtained by implementing the 30 HOTRG steps. The result of § is shown in Figure 3. In
this figure, the bond dimension ¥ is set to be the integers in 32 < y < 64. s¢ is a parameter which
represents the truncation magnitude of the singular values in Eq. (3.1), and defined by 1.0 x 107",
where m is set to be some integers. For given scu, Xp in Eq. (3.1) is defined by the number of
singular values, S,,,, which satisfy S, > S| X scy¢. From Fig. 3, it is enough to set s¢ye < 1 X 1072
in 32 < y < 64 since the results of the proposed method (s¢ye = 1 X 1077) are consistent with those
of the original HOTRG.

Next, let us see the difference between the free energies obtained by the proposed method and
the original HOTRG in detail. For this purpose, we define another relative error of the free energy,
Of, as

, (4.3)

f proposal — f hotrg

& —
! f hotrg

, 4.4)

where froposal means the free energy given by the proposed method and foug is the free energy
obtained by the original HOTRG. The relation between y and &y is shown in Figure 4. From this
figure, we find that the values of 8y depend on s rather than x, and 8y = 0 with double precision
for sy = 1078, Therefore, we conclude that JSproposal 18 €qual to fhowe When seye = 1078,

Then, to see the performance of the proposed method, we introduce xII)VI, which is the largest
Xp after the 7th coarse-graining of the proposed method. Figure 5 shows the relation between x
and x2/ xlljv[. From this figure, we can see 2/ xrl,w is increasing when ) becomes larger. Therefore,
the power of x in xf)v[ is less than 2 as xll,\/[ is the functions of . Moreover, we can see the relation
between ) and xll)v[ in Figure 6. To investigate the power of ) in xfl,v[, we fit the data with the
following function:

X' =ax‘+b, (4.5)



Hideaki OBA 7

1x10” —
Se=1x107° ¥
Seu=1x10° O
v s =1x107 A
IXI0-107 \% VVVVV swt=1x10'8 o
vV v VVV vavvvv cut’
v VVVVV _ _gv
S~ 11 vy
(,O 1x10° 3 OO
00n~O o)
0CpvV 000
o © O, ooo 00,0
o) o)
12| 204 ©
1x10° ¢ VAVAVAN Q00
A A AAAD AN A AANAN
13 ‘ ‘ ‘ ‘ ‘ ‘
IX10775, 35 40 45 50 55 60 65

X

Figure 4: The relation between y and 6f when s¢,; changes. We cannot see the results for scy =
1 x 1078 since 0y = 0 with double precision.
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Figure 5: The relation between ) and xg,v' /x? of the proposed method when s¢ changes.

Table 1: The fitting results of the data in Figure 6 with Eq. (4.5).

EN b | c |
107> | 1.01(44) x 10" | —6.85(38) x 10" | 9.63(90) x 10~!
10° 8.7(39) —4.85(38) x 10! 1.045(92)

1077 | 1.05(76) x 10! | —1.0(86) x 10! 1.05(15)
1078 | 1.0(10) x 10> | —4.4(37) x 10> | 6.6(19) x 107!

and show the fitting results in Table 1. The fitting range is set to be 32 < y < 64. From this table,
we find

c~1 (4.6)

in Eq. (4.5) at the all s.y. Therefore, the proposed method can reduce the computational cost from
O(x") to O(x°).

Finally, we investigate the total elapsed times of the two algorithms and a performance ratio
which is defined as the division of the elapsed time of the original HOTRG by that of the proposed
method with the same bond dimension. The results of the elapsed times and the performance ratio
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Figure 6: The relation between y and x%)\’[ of the proposed method when s, changes. The solid
lines are the fitting lines of the data with the function shown in Eq. (4.5).
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Figure 7: The elapsed times of the original HOTRG and the proposed method (scy; = 10~%), and
the performance ratio between the two methods as the functions of ¥.

are shown in Figure 7. From this figure, we find that the elapsed time of the proposed method
is smaller than that of the original HOTRG in 32 < y < 64 and the performance ratio becomes
larger as the bond dimension grows. Therefore, we conclude that the performance of the proposed
method is better than that of the original HOTRG. For measuring the elapsed times, we used the
machine which has 24GB for the memory and Xeon X5670 (2.93 Ghz 6 core) for the two CPUs.
The programs of the algorithms are written with python 2.7.6rcl and we used numpy.tensordot
in numpy 1.8.0 for the tensor contractions and scipy.linalg.svd in scipy 0.14.0 for the SVD of the
tensors.

5 Summary and outlooks

We reduce the computational cost of the bottleneck contraction in the HOTRG by using the SVD.
The computational cost of the bottleneck part in the HOTRG becomes O(y,x°) from O(x”). To
confirm the effectiveness of the proposed technique, we use the square lattice Ising model and find
that the free energy of the proposed method are consistent with the original HOTRG in 32 < y <64
if we set scut = 1078, We also find that the proposed method can reduce the computational cost
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from O(x”) to O(x®), and actually the elapsed time of the proposed method is smaller than that of
the original HOTRG. Therefore, we conclude that the proposed method shows better performance
than the original HOTRG.

For the future works, we consider extending this technique to the HOTRG which can be applied

to the high dimensional systems. However, the spectra of the tensors in the bottleneck calculation
seem to decay much more slowly. To solve this situation, we may take account of applying the
environment of the tensor [4] and disentanglers [7] for the new algorithm.
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