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Abstract We study a series of tangent circles orthogonal to the unit circle on the complex
plane. In particular, we study the case that the number of tangent circles is three. By operat-
ing inversions to the circles, we have an infinite family of circles. We show that the inverse
of the radius of a circle in the family is a linear sum of the inverses of the radii of beginning
three circles, and then their coefficients are expressed by using Stern’s diatomic sequence
(Theorem 4.4). As a corollary, we obtain a formula to compute π (Corollary 4.5).
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1 Introduction

Stern’s diatomic sequence is a sequence
{
am

}∞
m=0 defined by

a0 = 0, a1 = 1, a2m = am, a2m+1 = am+am+1 (m ∈ Z≥0).

As far as we know, M. A. Stern firstly defined it in [10], after that several authors have studied
it (e.g. [4, 7, 9]). In the present paper, we refine am as [2n : m] (m,n ∈ Z≥0,0 ≤ m ≤ 2n), which is
called Stern’s diatomic integer with depth n and order m. We arrange Stern’s diatomic integers as
vertices of a fixed infinite graph. The resulting one is called Stern’s diatomic table (cf. Definition
4.1 and Fig. 4-1). Precisely, each Stern’s diatomic integer [2n : m] is situated on the n-th line (the
depth n) and the order m from the left in Stern’s diatomic table.

In Section 2, we give a definition of tangent transformations and a series of tangent circles. In
the complex plane, for three different points a1,a2 and a3 on the unit circle, let C1,C2 and C3 be
circles with centers p1, p2 and p3 that are in contact with one another at a1,a2 and a3. These circles
are orthogonal to the unit circle. We define three Möbius transformations: Fi(z) = (z− pi)/(piz−
1)(i = 1,2,3), which are called tangent transformations with centers pi. Then Fi(Ci) = Ci (i =
1,2,3), and composite transformations FiFi = Fi ◦ Fi (i = 1,2,3) are the identity transformation.
For any non-negative integer n, we define

Tn =
{
Fin · · ·Fi2 Fi1 | i1, i2, · · · , in ∈ {1,2,3}, ik , ik+1(1 ≤ k ≤ n−1)

}
,
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where if n = 0, T0 consists of the identity transformation only. We set

TCn=
{
Ci1i2···in =Fin · · ·Fi3 Fi2(Ci1) |Fin · · ·Fi3 Fi2 ∈Tn−1, i1 , i2

}
,T =

∞⨿
n=0

Tn,TC=
∞⨿

n=1

TCn.

Then T has a free group structure whose generators are F1, F2 and F3, and the unit is the identity
transformation.

All circles of TCn are arranged on the unit circle without any gaps, each circle of TCn is
orthogonal to the unit circle, and any two circles of TCn are either tangent or disjoint from each
other. We set

TC1
n=

{
Ci1i2···in ∈TCn | in=1},TC2

n=
{
Ci1i2···in ∈TCn | in=2},TC3

n=
{
Ci1i2···in ∈TCn | in=3},

then all circles of TC1
n are inside C1, all circles of TC2

n are inside C2, all circles of TC3
n are inside

C3, and TCn =
⨿3

k=1 TCk
n. About this part, the readers refer to [5, 6, 8].

In Section 3, we clarify the relationships among the circles of TC.
In Section 4, we prove the main result Theorem 4.4, which shows us a relationship between

geometric problems and Stern’s diatomic sequence. We note that in this paper, for any circle, we
denote the radius of its circle by the same symbol. Then Theorem 4.4 states that if C(n:m) ∈ TC1

n is
the mth (1 ≤ m ≤ 2n−1) circle counterclockwise from a1, it holds

1

C(n:m)
=

(n : m)1

C1
+

(n : m)2

C2
+

(n : m)3

C3
,

where

(n : m)1 = [2n : 2n−1+ (m−1)][2n : 2n−1+m],

(n : m)2 = [2n : m−1][2n : m],

(n : m)3 = [2n : 2n−1− (m−1)][2n : 2n−1−m].

As an application of Theorem 4.4, Corollary 4.5 states that π is given by (4:39) via Stern’s diatomic
integers.

Starting with Theorem 4.4, careful consideration to Stern’s diatomic integers gives us a chance
to study the Markov Conjecture (cf. [2]) which is one of the important Diophantine problems. In
the forthcoming paper, by using a binary number presentation of Stern’s diatomic integer, we will
define the assembly function (cf. [11]), which is essentially equivalent to Conway’s box function,
and clarify importance of the assembly function and the relationship with the Markov Conjecture.

2 A series of tangent circles

For any complex number p, we define a Möbius transformation on the complex plane: F(z) =
(z− p)/(pz−1) .We summarize the properties of this function.

Lemma 2.1. Let ∆ = 1(−1)− (−p)p = |p|2−1.
(1) If ∆ = 0, then F(z) is a constant function.
(2) If ∆ , 0, then we have the following results:
(i) F(0) = p,F(p) = 0,F(F(z)) = z.
(ii) For any point z on the unit circle, F(z) is on the unit circle.
(iii) If |p| > 1, for any point z inside the unit circle, F(z) is outside the unit circle, and for any point
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z outside the unit circle, F(z) is inside the unit circle.
If |p| < 1, for any point z inside the unit circle, F(z) is inside the unit circle, and for any point
outside the unit circle, F(z) is outside the unit circle.
(iv) F(z) is a conformal mapping and a circle-to-circle correspondence.

Proof. (1) Since pp = |p|2 = 1, F(z) =
z− p

pz−1
=

p(z− p)

ppz− p
=

p(z− p)

z− p
= p.

(2) (i) These formulas can be easily confirmed.

(ii) If |z| = 1, from zz = |z|2 = 1, |F(z)| =
∣∣∣∣∣ z− p

pz−1

∣∣∣∣∣ = ∣∣∣∣∣ z− p

pz− zz

∣∣∣∣∣ = |z− p|
|z||z− p| =

1

|z| = 1.

(iii) We note that

|F(z)|2−1 =
z− p

pz−1
·

z− p

pz−1
−1 =

(1− |p|2)(|z|2−1)

|pz−1|2 .

If |p| > 1, for any complex number z with |z| > 1, we have |F(z)| < 1, and for any complex number z
with |z|< 1, we have |F(z)|> 1. If |p|< 1, for any complex number z with |z|> 1, we have |F(z)|> 1,
and for any complex number z with |z| < 1, we have |F(z)| < 1.
(iv) It is a well-known result in the complex function theory.

□

Definition 2.2. Suppose p is an intersection point of two straight lines tangent to the unit circle C
at a1,a2 (a1 , ±a2). Let C′ be a circle with center p and radius r = |a1 − p| = |a2 − p|.We define a
Möbius transformation such that F(z) = (z− p)/(pz−1), and call it the tangent transformation of
C and p the center of F.

We summarize the properties of F(z).

Lemma 2.3. Under the setting in Definition 2.2, we have the following:
(1) For any point z on the circle C′, F(z) is also on C′, and z,F(z),0 are on the same straight line.
For any point z inside C′, F(z) is outside C′, and for any point z outside C′, F(z) is inside C′.
(2) For any point z on the unit circle C, F(z) is also on C, and z,F(z), p are on the same straight
line. In particular, a1 and a2 are fixed points of F. For any point z inside C, F(z) is outside C, and
for any point z outside C, F(z) is inside C.
(3) For two points z1,z2 (z1 , ±z2) on the unit circle C, we put z′1 = F(z1),z′2 = F(z2), then z′1,z

′
2 are

also on the unit circle C. Let C1 be a circle orthogonal to C at z1,z2, and C2 be a circle orthogonal
to C at z′1,z

′
2. Then C1 corresponds to C2 under F, and C2 conversely corresponds to C1 under F.

Proof. (1) We note that |p| > 1. Since

|F(z)− p|2− (|p|2−1) =
(|p|2−1)

{
(|p|2−1)− |z− p|2}
|pz−1|2 ,

if |z− p| =
√
|p|2−1, then |F(z)− p| =

√
|p|2−1, if |z− p| >

√
|p|2−1, then |F(z)− p| <

√
|p|2−1,

and if |z− p| <
√
|p|2−1, then |F(z)− p| >

√
|p|2−1. Hence we have that for any point z on the

circle C′, F(z) is also on C′, for any point z inside C′, F(z) is outside C′, and for any point z outside
C′, F(z) is inside C′. If z is a point on C′, F(z) is also a point on C′. Then

|p|2−1 = |z− p|2 = (z− p)(z− p) = zz− pz− pz+ |p|2.

From pz−1 = (z− p)z, we have

F(z) =
z− p

pz−1
=

z− p

(z− p)z
=

1

z
=

z

|z|2 . (2:1)
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Fig 2-1 Fig 2-2

Therefore, the origin 0, F(z),z are on the same straight line. If z is a fixed point, from (2:1), we
have |z| = 1, which concludes that the fixed points on C′ are only a1,a2.
(2) Since |p| > 1, from Lemma 2.1 (2) (ii), (iii), we have that for any point z on the unit circle C,
F(z) is also on C, for any point z inside C, F(z) is outside C, and for any point z outside C, F(z) is
inside C. If z is a point on C, from 1 = |z|2 = zz,

F(z)− p =
z− p

pz−1
− p =

(1− |p|2)z

pz−1
=

(1− |p|2)z(pz−1)

|pz−1|2 =
(|p|2−1)(z− p)

|pz−1|2 . (2:2)

Hence F(z),z, p are on the same straight line. Let z be a fixed point. Then we have |F(z)− p| =
|z− p|. By (2:2), |p− z| = |p− z| = |pz−1| =

√
|p|2−1. Therefore, we conclude that the fixed points

of F are only a1,a2.
(3) By Lemma 2.1 (2) (i) and Lemma 2.3 (2), z′1,z

′
2 are on the unit circle C, and z1 = F(z′1),z2 =

F(z′2). Since F is a conformal mapping and a circle-to-circle correspondence, the circle C1 corre-
sponds to the circle C2 under F, and the circle C2 conversely corresponds to the circle C1 under
F. □

In the complex plane, for three different points a1,a2 and a3 on the unit circle, where △a1a2a3

is an acute triangle, let C1,C2 and C3 be circles with centers p1, p2 and p3 that are in contact with
each other at a1,a2 and a3. These circles are orthogonal to the unit circle C. We define three
Möbius transformations:

F1(z) =
z− p1

p1z−1
, F2(z) =

z− p2

p2z−1
, F3(z) =

z− p3

p3z−1
,

which are called tangent transformations with centers pi (i = 1,2,3). Then we note that composite
transformations FiFi = Fi◦Fi (i= 1,2,3) are the identity transformation, and FiCi = Fi(Ci)=Ci (i=
1,2,3).

Definition 2.4. For any non-negative integer n, we define

Tn =
{
Fin · · ·Fi2 Fi1 | i1, i2, · · · , in ∈ {1,2,3}, ik , ik+1(1 ≤ k ≤ n−1)

}
,

and, for any positive integer n,

TCn =
{
Ci1i2···in = Fin · · ·Fi3 Fi2(Ci1) |Fin · · ·Fi3 Fi2 ∈ Tn−1, i1 , i2

}
,

where if n = 0, Fin · · ·Fi2 Fi1 represents the identity transformation. Fin · · ·Fi2 Fi1 is also called a
tangent transformation and Ci1i2···in = Fin · · ·Fi3 Fi2(Ci1) is called a tangent circle with rank n.
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We set T =
⨿∞

n=0 Tn, TC =
⨿∞

n=1 TCn, then T has a free group structure whose generators
are F1, F2 and F3, and the unit is the identity transformation. All tangent circles with rank n
are arranged on the unit circle without any gaps, each tangent circle with rank n is orthogonal to
the unit circle, and any two tangent circles with rank n are either tangent or disjoint from each
other. Further we set TC1

n =
{
Ci1i2···in ∈ TCn | in = 1},TC2

n =
{
Ci1i2···in ∈ TCn | in = 2} and TC3

n ={
Ci1i2···in ∈ TCn | in = 3}, then all tangent circles of TC1

n are inside C1, all tangent circles of TC2
n

are inside C2, all tangent circles of TC3
n are inside C3 and TCn =

⨿3
k=1 TCk

n. Finally, we set
IF =

{
C1,C2,C3,F1,F2,F3

}
, and call it the initial figure.

From now on, for any circle H, we represent the radius of its circle by the same symbol H. In
particular, we represent the radius of a tangent circle Ci1i2···in by the same symbol Ci1i2···in .

3 The relationships among tangent circles

In this section, we study several relationships among the radii of tangent circles.

Lemma 3.1. In Figure 3-1, let a1,a2,a3 (a1 , ±a3) be three points on the unit circle C, and C1

be a circle orthogonal to C at a1,a3. Suppose c1 is a circle orthogonal to C at a1,a2, and c2 is a
circle orthogonal to C at a2,a3. Then C1,c1,c2 are touching at a1,a2,a3. We set l = |a1−a3|. Then
we have

(1) C1 =
c1+ c2

1− c1c2
, (2) l =

2C1√
1+ (C1)2

. (3:1)

a1

a2

l

a3

c1

c2

C1

C0
α

β
θ

Fig 3-1

Proof. (1) We put θ = ∠a10a3, α = ∠a10a2, β = ∠a20a3. Then from θ = α + β, we have θ/2 =
α/2+β/2. Hence,

C1 = tan
θ

2
= tan

(α
2
+
β

2

)
=

tan
α

2
+ tan

β

2

1− tan
α

2
tan
β

2

=
c1+ c2

1− c1c2
.

(2) From C1 = tan
θ

2
and l = 2 sin

θ

2
, we have the result by simple calculation. □
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Theorem 3.2. In Figure 3-2, let C1,C2,c be circles orthogonal to the unit circle C, where C1,C2

circumscribe each other at a point a3, and C1,c inscribe each other at the same point a3. For
F(z) = (z− p)/(pz− 1) ( |p| > 1), let C′1,C

′
2, c
′ be the images of C1,C2, c under F respectively.

Then we have the following relationships among these radii.

(1)
C1

C2
·
C2+ c

C1− c
=

C′1
C′2
·
C′2+ c′

C′1− c′
. (2) c′ =

c (C1+C2)(C1

C′1

)
(C2+ c)+

(C2

C′2

)
(C1− c)

. (3:2)

a4 a4’

a3

0
a3’

a2

a2’

a1

a1’

p

C1

C2
C2’

C1’c

c’

Fig 3-2

Proof. Let a1,a2,a4,a′1,a
′
2,a
′
4 be intersection points of C and C1,c,C2,C′1,c

′,C′2 respectively, and
we set |a4−a3| = l1, |a3−a1| = l2, |a4−a2| = l3, |a2−a1| = l4, |a′4−a′3| = l′1, |a′3−a′1| = l′2, |a′4−a′2| =
l′3, |a′2−a′1| = l′4. Then since cross ratios are invariant under F, we have

(a4−a3)(a2−a1)

(a3−a1)(a4−a2)
=

(a′4−a′3)(a′2−a′1)

(a′3−a′1)(a′4−a′2)
,

which concludes that
l′1
l1
·
l′4
l4
=

l′2
l2
·
l′3
l3
. (3:3)

Suppose c1 is the circle orthogonal to C at 2 points a1,a2, and c2 is the circle orthogonal to C at 2
points a2,a4. Let c′1, c

′
2 be the images of c1, c2 under F respectively. We substitute (3:1) into the

square of (3:3). Then we have

(C′2)2

(C2)2 ·
1+ (C2)2

1+ (C′2)2 ·
(c′1)2

(c1)2 ·
1+ (c1)2

1+ (c′1)2 =
(C′1)2

(C1)2 ·
1+ (C1)2

1+ (C′1)2 ·
(c′2)2

(c2)2 ·
1+ (c2)2

1+ (c′2)2 .

By Lemma 3.1, we have c1 =
C1− c

1+C1c
, c2 =

C2+ c

1−C2c
, c′1 =

C′1− c′

1+C′1c′
, c′2 =

C′2+ c′

1−C′2c′
. Hence,

(C′2)2

(C2)2 ·
1+ (C2)2

1+ (C′2)2 ·
(C′1− c′)2

(C1− c)2 ·
(1+C1c)2+ (C1− c)2

(1+C′1c′)2+ (C′1− c′)2

=
(C′1)2

(C1)2 ·
1+ (C1)2

1+ (C′1)2 ·
(C′2+ c′)2

(C2+ c)2 ·
(1−C2c)2+ (C2+ c)2

(1−C′2c′)2+ (C′2+ c′)2 .
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Therefore,
C1

C2
·
C2+ c

C1− c
=

C′1
C′2
·
C′2+ c′

C′1− c′
. (3:4)

By (3:4), we immediately obtain (3:2). □

For the radii of a series of tangent circles of TC, we rewrite Theorem 3.2.

Corollary 3.3. Let IF =
{
C1,C2,C3,F1,F2,F3

}
be the initial figure, where

F1(z) =
z− p1

p1z−1
, F2(z) =

z− p2

p2z−1
, F3(z) =

z− p3

p3z−1
.

Suppose H1,H2 are the tangent circles with rank n, h1,h2 are the tangent circles with rank n+ 1,
and these circles are touching each other at a point a on C. Let H′1,H

′
2,h
′
1,h
′
2 be the images of

H1,H2,h1,h2 under F1 respectively. Then,

h′1 =
h1(H1+H2)(H1

H′1

)
(H2+h1)+

(H2

H′2

)
(H1−h1)

, h′2 =
h2(H1+H2)(H1

H′1

)
(H2−h2)+

(H2

H′2

)
(H1+h2)

.

Theorem 3.4. Let IF =
{
C1,C2,C3,F1,F2,F3

}
be the initial figure, where

F1(z) =
z− p1

p1z−1
, F2(z) =

z− p2

p2z−1
, F3(z) =

z− p3

p3z−1
.

Suppose this IF has been already rotated around the origin such that p1 locates on the positive
real axis. Let a1,a2,a3 be contact points between C3 and C1, C1 and C2, C2 and C3 respectively.
For any point a on C, let a′ be the image of a under F1, and θ (0 ≤ θ < 2π),r(θ) (0 ≤ θ < 2π),α (0 <
α < π/2) be the arguments of complex numbers a,a′,a2 respectively. Then, we have the following:

(1) If θ = 0, then r(θ) = π.

(2) If θ = π, then r(θ) = 0.

(3) If θ , 0, π, then tan
θ

2
tan

r(θ)

2
= tan2 α

2
. (3:5)

Proof. (3) Under this situation, we denote a= eiθ,a′ = eir(θ),a1 = e−iα,a2 = eiα, p1 = 1/cosα . Since
the argument of the complex number z = (a′− p1)/(a− p1) equals to 0, z is a real number. Hence,

a′− p1

a− p1
=

a′− p1

a− p1
.

ei(r(θ)−θ) cos2α− eir(θ) cosα− e−iθ cosα = ei(θ−r(θ)) cos2α− eiθ cosα− e−ir(θ) cosα.

From 0 < α < π/2, we have cosα , 0. Hence

(ei(r(θ)−θ)− e−i(r(θ)−θ))cosα+ (eiθ − e−iθ)− (eir(θ)− e−ir(θ)) = 0.

sin
r(θ)− θ

2

(
cos

r(θ)− θ
2

cosα− cos
r(θ)+ θ

2

)
= 0.
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C

0

C1

C2

C3

a1

θ
α

r(θ)
p1

a2

a’
a3

a

Fig 3-3

Hence

sin
r(θ)− θ

2
= 0 · · · · · · ⟨1⟩ or cos

r(θ)− θ
2

cosα−cos
r(θ)+ θ

2
= 0 · · · · · · ⟨2⟩ .

In the case ⟨1⟩: Since −π < (r(θ)− θ)/2 < π, we have r(θ) = θ, which implies θ = r(θ) = α or
θ = r(θ) = 2π−α. In the both cases, we have (3:5).
In the case ⟨2⟩:

cosα
(
cos

r(θ)

2
cos
θ

2
+ sin

r(θ)

2
sin
θ

2

)
−

(
cos

r(θ)

2
cos
θ

2
− sin

r(θ)

2
sin
θ

2

)
= 0.

(1+ cosα) sin
r(θ)

2
sin
θ

2
= (1− cosα)cos

r(θ)

2
cos
θ

2
.

Since 0 < α < π/2 and θ , 0,π, we have 1+ cosα , 0, cos
θ

2
, 0,cos

r(θ)

2
, 0. Hence,

tan
θ

2
tan

r(θ)

2
=

1− cosα

1+ cosα
= tan2 α

2
.

(1), (2) It is clear that if θ = 0, then r(θ) = π, and if θ = π, then r(θ) = 0. □

4 The radii of tangent circles with rank n

Definition 4.1. For two non-negative integers m and n with 0 ≤ m ≤ 2n, we define an integer
[2n : m] by the following rules:

1. [20 : 0] = 0, [20 : 1] = 1 ,

2. [2n+1 : 2m] = [2n : m] (0 ≤ m ≤ 2n) ,

3. [2n+1 : 2m+1] = [2n : m]+ [2n : m+1] (0 ≤ m ≤ 2n−1) .

We call [2n : m] Stern’s diatomic integer (SDI, for short) for depth n and order m. SDIs are
expressed in Fig. 4-1. We call this table of SDIs Stern’s diatomic table (SDT, for short).
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[23 : 0]
(0)

[23 : 1]
(1)

[23 : 2]
(1)
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(2)

[23 : 4]
(1)

[23 : 5]
(3)

[23 : 6]
(2)

[23 : 7]
(3)

[23 : 8]
(1)

Fig. 4-1

From the definition, we can immediately obtain the following relations:

(1) [2n+1 : m] = [2n : m] (0 ≤ m ≤ 2n),

(2) [2n : 2m] = [2n : m] (0 ≤ m ≤ 2n−1),

(3) [2n : 2n−1+m] = [2n : 2n−m] (0 ≤ m ≤ 2n−1).

Lemma 4.2. Let m and n be two integers with n ≥ 1,1 ≤m ≤ 2n−1. If m = 2p(2k+1) (p,k ∈ Z≥0),
then

[2n : m−1]+ [2n : m+1] = (2p+1)[2n : m] .

Proof. We prove this identity by induction on p. If p = 0, then m = 2k+1, and

[2n : m−1]+ [2n : m+1] = [2n : 2k]+ [2n : 2k+2] = [2n−1 : k]+ [2n−1 : k+1]

= [2n : 2k+1] = [2n : m].

For some integer p≥ 0, suppose [2n : m−1]+ [2n : m+1]= (2p+1)[2n : m], where m is an arbitrary
integer such that m = 2p(2k+1). For any integer m = 2p+1(2k+1),

[2n : m−1]+ [2n : m+1] = [2n : 2p+1(2k+1)−1]+ [2n : 2p+1(2k+1)+1]

= [2n−1 : 2p(2k+1)−1]+2[2n−1 : 2p(2k+1)]+ [2n−1 : 2p(2k+1)+1]

= (2p+1)[2n−1 : 2p(2k+1)]+2[2n−1 : 2p(2k+1)]

= (2p+1)[2n : 2p+1(2k+1)]+2[2n : 2p+1(2k+1)] = (2p+3)[2n : m],

which completes the proof. □

Definition 4.3. By using SDIs, we define the following integers. For m = 1,2, · · · ,2n−1,

(n : m)1 = [2n : 2n−1+ (m−1)][2n : 2n−1+m], (4:1)

(n : m)2 = [2n : m−1][2n : m], (4:2)

(n : m)3 = [2n : 2n−1− (m−1)][2n : 2n−1−m]. (4:3)

Theorem 4.4. Suppose IF =
{
C1,C2,C3,F1,F2,F3

}
is the initial figure, where

F1(z) =
z− p1

p1z−1
, F2(z) =

z− p2

p2z−1
, F3(z) =

z− p3

p3z−1
.
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Let a1,a2,a3 be contact points on the unit circle C between C3 and C1, C1 and C2, C2 and C3

respectively, and C(n:m) ∈ TC1
n be the mth (1 ≤ m ≤ 2n−1) tangent circle counterclockwise from a1

with rank n in C1. Then,
1

C(n:m)
=

(n : m)1

C1
+

(n : m)2

C2
+

(n : m)3

C3
. (4:4)

We obtain the radii of tangent circles with rank n in C2,C3 by replacing C1,C2,C3 of (4:4) with
C2,C3,C1 or C3,C1,C2. To be precise, suppose a2 is the contact point between C1 and C2, and a3

is the contact point between C2 and C3. Let H(n:m) ∈ TC2
n be the mth (1 ≤ m ≤ 2n−1) tangent circle

counterclockwise from a2 with rank n in C2. Then,

1

H(n:m)
=

(n : m)1

C2
+

(n : m)2

C3
+

(n : m)3

C1
. (4:5)

Let K(n:m) ∈ TC3
n be the mth (1 ≤ m ≤ 2n−1) tangent circle counterclockwise from a3 with rank n in

C3. Then,
1

K(n:m)
=

(n : m)1

C3
+

(n : m)2

C1
+

(n : m)3

C2
. (4:6)

Proof. We prove this proposition by induction on rank n. If n = 1, then m = 1 and C(1:1) = C1.
Meanwhile, by (4:1), (4:2) and (4:3), we have

(1 :1)1 = [2 :1][2 :2] = 1, (1 :1)2 = [2 :0][2 :1] = 0, (1 :1)3 = [2 :1][2 :0] = 0.

Hence we have
1

C(1:1)
=

1

C1
=

(1 : 1)1

C1
+

(1 : 1)2

C2
+

(1 : 1)3

C3
.

Similarly, we can confirm that C2,C3 are expressed by (4:5), (4:6).
If n = 2, then m = 1 or 2, and C(2:1) =C31,C(2:2) =C21. First we show the radius of C21.

C1

a1

p1

a2

a3 a3’

C2

C3

C31

C21

C
0

Fig 4-2

In Figure 4-2, we put ∠p10a3 = θ, ∠p10a′3 = r(θ) and ∠p10a2 = α. Then,
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C21 = tan
α− r(θ)

2
=

tan
α

2
− tan

r(θ)

2

1+ tan
α

2
tan

r(θ)

2

=

tan
θ

2
tan
α

2
− tan

θ

2
tan

r(θ)

2

tan
θ

2
+ tan

α

2
tan
θ

2
tan

r(θ)

2

.

By Theorem 3.4, we have C21 =

tan
θ

2
tan
α

2
− tan2

α

2

tan
θ

2
+ tan3

α

2

· · · · · · · · · ⟨1⟩ .

Note C1 = tanα, C2 = tan
θ−α

2
=

tan
θ

2
− tan

α

2

1+ tan
θ

2
tan
α

2

, and substitute tan
θ

2
=

C2+ tan
α

2

1−C2tan
α

2
into ⟨1⟩. Then,

C21 =

C2 tan
α

2
+C2tan3

α

2

C2+ tan
α

2
+ tan3

α

2
−C2tan4

α

2

=

C2tan
α

2

C2

(
1− tan2

α

2

)
+ tan

α

2

=

2C2sin
α

2
cos
α

2

2C2

(
cos2

α

2
− sin2

α

2

)
+2sin

α

2
cos
α

2

=
C2tanα

2C2+ tanα
=

C1C2

2C2+C1
.

Similarly, we have the radius of C31 as follows:

C31 = tan
α+ r(θ)

2
=

tan
α

2
+ tan

r(θ)

2

1− tan
α

2
tan

r(θ)

2

=

tan
θ

2
tan
α

2
+ tan

θ

2
tan

r(θ)

2

tan
θ

2
− tan

α

2
tan
θ

2
tan

r(θ)

2

.

By Theorem 3.4, we have C31 =

tan
θ

2
tan
α

2
+ tan2

α

2

tan
θ

2
− tan3

α

2

· · · · · · ⟨2⟩.

Note C3 = tan
(2π−α)− θ

2
= tan

(
π−
α+ θ

2

)
=− tan

α+ θ

2
=−

tan
α

2
+ tan

θ

2

1− tan
α

2
tan
θ

2

, and substitute tan
θ

2
=

C3+ tan
α

2

C3tan
α

2
−1

into ⟨2⟩. Then we have
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C31 =

C3tan
α

2
+C3tan3

α

2

C3+ tan
α

2
+ tan3

α

2
−C3tan4

α

2

=

C3tan
α

2

C3

(
1− tan2

α

2

)
+ tan

α

2

=

2C3sin
α

2
cos
α

2

2C3

(
cos2

α

2
− sin2

α

2

)
+2sin

α

2
cos
α

2

=
C3sinα

2C3cosα+ sinα
=

C1C3

2C3+C1
.

From the above mentioned, we have

1

C31
=

2

C1
+

1

C3
,

1

C21
=

2

C1
+

1

C2
. (4:7)

Meanwhile, if n = 2 and m = 1,

(2 :1)1 = [4 :2][4 :3] = 2, (2 :1)2 = [4 :0][4 :1] = 0, (2 :1)3 = [4 :2][4 :1] = 1.

If n = 2 and m = 2,

(2 :2)1 = [4 :3][4 :4] = 2, (2 :2)2 = [4 :1][4 :2] = 1, (2 :2)3 = [4 :1][4 :0] = 0.

Hence we have

1

C(2:1)
=

1

C31
=

(2 :1)1

C1
+

(2 :1)2

C2
+

(2 :1)3

C3
,

1

C(2:2)
=

1

C21
=

(2 :2)1

C1
+

(2 :2)2

C2
+

(2 :2)3

C3
.

Therefore all the radii of tangent circles with rank 2 in C1 are given by (4:4), which immediately
concludes that all the radii of tangent circles with rank 2 in C2,C3 are given by (4:5), (4:6).

Suppose all the radii of tangent circles with rank n,n+1 in C1 are given by (4:4). To be precise,
for any order m (1 ≤ m ≤ 2n−1), the radius of the mth tangent circle from a1 with rank n in C1 is
given by

1

C(n:m)
=

(n : m)1

C1
+

(n : m)2

C2
+

(n : m)3

C3
, (4:8)

and for any order m (1 ≤ m ≤ 2n), the radius of the mth tangent circle from a1 with rank n+1 in C1

is given by
1

C(n+1:m)
=

(n+1 : m)1

C1
+

(n+1 : m)2

C2
+

(n+1 : m)3

C3
. (4:9)

Then, we can conclude that for any order m (1 ≤ m ≤ 2n−1), the radius of the mth tangent circle
from a2 with rank n in C2 is given by

1

H(n:m)
=

(n : m)1

C2
+

(n : m)2

C3
+

(n : m)3

C1
, (4:10)

and the radius of the mth tangent circle from a3 with rank n in C3 is given by

1

K(n:m)
=

(n : m)1

C3
+

(n : m)2

C1
+

(n : m)3

C2
. (4:11)
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Furthermore, we can conclude that for any order m (1≤m≤ 2n), the radius of the mth tangent circle
from a2 with rank n+1 in C2 is given by

1

H(n+1:m)
=

(n+1 : m)1

C2
+

(n+1 : m)2

C3
+

(n+1 : m)3

C1
, (4:12)

and the radius of the mth tangent circle from a3 with rank n+1 in C3 is given by

1

K(n+1:m)
=

(n+1 : m)1

C3
+

(n+1 : m)2

C1
+

(n+1 : m)3

C2
. (4:13)

Under the assumptions (4:8), (4:9), (4:10), (4:11), (4:12), (4:13), we will prove that for any order
m (1 ≤ m ≤ 2n+1), the radius of the mth tangent circle from a1 with rank n+2 in C1 is given by

1

C(n+2:m)
=

(n+2 : m)1

C1
+

(n+2 : m)2

C2
+

(n+2 : m)3

C3
.

C(n+1:l)

K(n:2n-1-l+1)

K(n:2n-1- l)

K(n+1:2n-2l+1)

C(n+1:l+1)

C1
C

0

a1

p1

a2

C(n+2:m)

Fig 4-3

(1) Let m be an even integer such that 2≤m≤ 2n−2, and we put m= 2l (l= 1,2, · · · ,2n−1−1). In
Figure 4-3, C(n+2:m) inscribes C(n+1:l) and circumscribes C(n+1:l+1), where C(n+1:l) is the lth tangent
circle from a1 with rank n+1 in C1 and C(n+1:l+1) is the (l+1)th tangent circle from a1 with rank
n+1 in C1. Then, the inverse image of C(n+1:l) under F1 is K(n:2n−1−l+1), which is the (2n−1− l+1)th

tangent circle from a3 with rank n in C3, the inverse image of C(n+1:l+1) under F1 is K(n:2n−1−l),
which is the (2n−1− l)th tangent circle from a3 with rank n in C3, and the inverse image of C(n+2:m)

under F1 is K(n+1:2n−2l+1), which is the (2n−2l+1)th tangent circle from a3 with rank n+1 in C3.



28 Stern’s diatomic sequence and a series of tangent circles orthogonal to the unit circle

From the assumption of induction,

1

C(n+1:l)
=

(n+1 : l)1

C1
+

(n+1 : l)2

C2
+

(n+1 : l)3

C3
, (4:14)

1

C(n+1:l+1)
=

(n+1 : l+1)1

C1
+

(n+1 : l+1)2

C2
+

(n+1 : l+1)3

C3
, (4:15)

1

K(n:2n−1−l+1)
=

(n : 2n−1− l+1)1

C3
+

(n : 2n−1− l+1)2

C1
+

(n : 2n−1− l+1)3

C2
, (4:16)

1

K(n:2n−1−l)
=

(n : 2n−1− l)1

C3
+

(n : 2n−1− l)2

C1
+

(n : 2n−1− l)3

C2
, (4:17)

1

K(n+1:2n−2l+1)
=

(n+1:2n−2l+1)1

C3
+

(n+1:2n−2l+1)2

C1
+

(n+1:2n−2l+1)3

C2
.

Hence, by Corollary 3.3, we can calculate C(n+2:m) as follows:

C(n+2:m)

=
K(n+1:2n−2l+1)

{
K(n:2n−1−l+1)+K(n:2n−1−l)

}
{K(n:2n−1−l+1)

C(n+1:l)

}{
K(n:2n−1−l)+K(n+1:2n−2l+1)

}
+

{K(n:2n−1−l)

C(n+1:l+1)

}{
K(n:2n−1−l+1)−K(n+1:2n−2l+1)

}

=

{ 1

K(n:2n−1−l+1)
+

1

K(n:2n−1−l)

}
1

C(n+1:l)

{ 1

K(n+1:2n−2l+1)
+

1

K(n:2n−1−l)

}
+

1

C(n+1:l+1)

{ 1

K(n+1:2n−2l+1)
−

1

K(n:2n−1−l+1)

} . (4:18)

By (4:16) and (4:17),

1

K(n:2n−1−l+1)
+

1

K(n:2n−1−l)
=

(n : 2n−1− l+1)1+ (n : 2n−1− l)1

C3

+
(n : 2n−1− l+1)2+ (n : 2n−1− l)2

C1
+

(n : 2n−1− l+1)3+ (n : 2n−1− l)3

C2
.

In this identity, we set l = 2p(2l′+1) (p, l′ ∈ Z≥0). Then by Lemma 4.2,

(n : 2n−1− l+1)1+ (n : 2n−1− l)1

= [2n : 2n− l][2n : 2n− l+1]+ [2n : 2n− l−1][2n : 2n− l]

= [2n : 2n− l]
(
[2n : 2n− l−1]+ [2n : 2n− l+1]

)
= [2n : 2n− l](2p+1)[2n : 2n− l] = (2p+1)[2n : 2n− l]2.

Similarly, we have

(n : 2n−1− l+1)2+ (n : 2n−1− l)2 = (2p+1)[2n : 2n−1− l]2,

(n : 2n−1− l+1)3+ (n : 2n−1− l)3 = (2p+1)[2n : l]2.
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Hence we have

1

K(n:2n−1−l+1)
+

1

K(n:2n−1−l)
= (2p+1)

( [2n : 2n− l]2

C3
+

[2n : 2n−1− l]2

C1
+

[2n : l]2

C2

)
. (4:19)

Meanwhile,

1

K(n+1:2n−2l+1)
−

1

K(n:2n−1−l+1)
=

(n+1 : 2n−2l+1)1− (n : 2n−1− l+1)1

C3

+
(n+1:2n−2l+1)2− (n :2n−1− l+1)2

C1
+

(n+1:2n−2l+1)3− (n :2n−1− l+1)3

C2
.

In this identity,

(n+1: 2n−2l+1)1− (n : 2n−1− l+1)1

= [2n+1 : 2n+1−2l][2n+1 : 2n+1−2l+1]− [2n : 2n− l][2n : 2n− l+1]

= [2n : 2n− l]
(
[2n+1 : 2n+1−2l+1]− [2n : 2n− l+1]

)
= [2n : 2n− l]

(
[2n : 2n− l]+ [2n : 2n− l+1]− [2n : 2n− l+1]

)
= [2n : 2n− l]2.

Similarly, we have

(n+1 : 2n−2l+1)2− (n : 2n−1− l+1)2 = [2n : 2n−1− l]2,

(n+1 : 2n−2l+1)3− (n : 2n−1− l+1)3 = [2n : l]2.

Hence we have

1

K(n+1:2n−2l+1)
−

1

K(n:2n−1−l+1)
=

[2n : 2n− l]2

C3
+

[2n : 2n−1− l]2

C1
+

[2n : l]2

C2
. (4:20)

Furthermore,

1

K(n+1:2n−2l+1)
+

1

K(n:2n−1−l)
=

(n+1 : 2n−2l+1)1+ (n : 2n−1− l)1

C3

+
(n+1 : 2n−2l+1)2+ (n : 2n−1− l)2

C1
+

(n+1 : 2n−2l+1)3+ (n : 2n−1− l)3

C2
.

In this identity,

(n+1 : 2n−2l+1)1+ (n : 2n−1− l)1 = 2(p+1)[2n : 2n− l]2,

(n+1 : 2n−2l+1)2+ (n : 2n−1− l)2 = 2(p+1)[2n : 2n−1− l]2,

(n+1 : 2n−2l+1)3+ (n : 2n−1− l)3 = 2(p+1)[2n : l]2.

Hence we have

1

K(n+1:2n−2l+1)
+

1

K(n:2n−1−l)
= 2(p+1)

( [2n : 2n− l]2

C3
+

[2n : 2n−1− l]2

C1
+

[2n : l]2

C2

)
. (4:21)

We substitute (4:19), (4:20) and (4:21) into (4:18), then we have

1

C(n+2:m)
=

2( p+1)

2p+1

1

C(n+1:l)
+

1

2p+1

1

C(n+1:l+1)
.
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We substitute (4:14), (4:15) into this identity. Then,

1

C(n+2:m)
=

2p+2

2p+1
(n+1 : l)1+

1

2p+1
(n+1 : l+1)1

C1

+

2p+2

2p+1
(n+1: l)2+

1

2p+1
(n+1: l+1)2

C2
+

2p+2

2p+1
(n+1: l)3+

1

2p+1
(n+1: l+1)3

C3
.

In this identity,

2p+2

2p+1
(n+1 : l)1+

1

2p+1
(n+1 : l+1)1

=
[2n+1 : 2n+ l]

2p+1

{
[2n+1 : 2n+ l+1]+ (2p+2)[2n+1 : 2n+ l−1]

}
=

[2n+1:2n+ l]

2p+1

{
[2n+1:2n+ l−1]+ [2n+1:2n+ l+1]+ (2p+1)[2n+1:2n+ l−1]

}
· · · ⟨3⟩.

Then, there exists some integer k2 such that 2n+ l = 2p(2k2+1). By Lemma 4.2,

⟨3⟩ =
[2n+1 : 2n+ l]

2p+1

{
(2p+1)[2n+1 : 2n+ l]+ (2p+1)[2n+1 : 2n+ l−1]

}
= [2n+1 : 2n+ l]

(
[2n+1 : 2n+ l−1]+ [2n+1 : 2n+ l]

)
= [2n+1 : 2n+ l][2n+2 : 2n+1+2l−1]

= [2n+2 : 2n+1+2l][2n+2 : 2n+1+2l−1]

= [2n+2 : 2n+1+m][2n+2 : 2n+1+ (m−1)] = (n+2 : m)1. (4:22)

Similarly,

2p+2

2p+1
(n+1 : l)2+

1

2p+1
(n+1 : l+1)2

=
[2n+1 : l]

2p+1

{
(2p+2)[2n+1 : l−1]+ [2n+1 : l+1]

}
=

[2n+1 : l]

2p+1

{
(2p+1)[2n+1 : l−1]+ [2n+1 : l−1]+ [2n+1 : l+1]

}
· · · · · · ⟨4⟩,

where l = 2p(2l′+1). By Lemma 4.2,

⟨4⟩ =
[2n+1 : l]

2p+1

{
(2p+1)[2n+1 : l−1]+ (2p+1)[2n+1 : l]

}
= [2n+1 : l]

(
[2n+1 : l−1]+ [2n+1 : l]

)
= [2n+2 : 2l][2n+2 : 2l−1]

= [2n+2 : m−1][2n+2 : m] = (n+2 : m)2. (4:23)
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Furthermore,

2p+2

2p+1
(n+1 : l)3+

1

2p+1
(n+1 : l+1)3

=
[2n+1 : 2n− l]

2p+1

{
[2n+1 : 2n− l−1]+ (2p+2)[2n+1 : 2n− l+1]

}
=

[2n+1:2n− l]

2p+1

{
[2n+1:2n− l−1]+ [2n+1:2n− l+1]+ (2p+1)[2n+1:2n− l+1]

}
· · · ⟨5⟩.

Then, there exists some integer k3 such that 2n− l = 2p(2k3+1). By Lemma 4.2,

⟨5⟩ =
[2n+1 : 2n− l]

2p+1

{
(2p+1)[2n+1 : 2n− l+1]+ (2p+1)[2n+1 : 2n− l]

}
= [2n+1 : 2n− l]

(
[2n+1 : 2n− l]+ [2n+1 : 2n− l+1]

)
= [2n+2 : 2n+1−2l][2n+2 : 2n+1−2l+1]

= [2n+2 : 2n+1− (m−1)][2n+2 : 2n+1−m] = (n+2 : m)3. (4:24)

Therefore, by (4:22), (4:23) and (4:24), we have

1

C(n+2:m)
=

(n+2 : m)1

C1
+

(n+2 : m)2

C2
+

(n+2 : m)3

C3
.

(2) Let m be an odd integer such that 3 ≤ m ≤ 2n − 1, and we put m = 2l− 1(l = 2,3, · · · ,2n). In
Figure 4-4, C(n+2:m) inscribes C(n+1:l) and circumscribes C(n+1:l−1), where C(n+1:l) is the lth tangent
circle from a1 with rank n+1 in C1 and C(n+1:l−1) is the (l−1)th tangent circle from a1 with rank
n+1 in C1. Then, the inverse image of C(n+1:l) under F1 is K(n:2n−1−l+1), which is the (2n−1− l+1)th

tangent circle from a3 with rank n in C3, the inverse image of C(n+1:l−1) under F1 is K(n:2n−1−l+2),
which is the (2n−1 − l+ 2)th tangent circle from a3 with rank n in C3, and the inverse image of
C(n+2:m) under F1 is K(n+1:2n−2l+2), which is the (2n−2l+2)th tangent circle from a3 with rank n+1
in C3. From the assumption of induction,

1

C(n+1:l)
=

(n+1 : l)1

C1
+

(n+1 : l)2

C2
+

(n+1 : l)3

C3
, (4:25)

1

C(n+1:l−1)
=

(n+1 : l−1)1

C1
+

(n+1 : l−1)2

C2
+

(n+1 : l−1)3

C3
, (4:26)

1

K(n:2n−1−l+1)
=

(n : 2n−1− l+1)1

C3
+

(n : 2n−1− l+1)2

C1
+

(n : 2n−1− l+1)3

C2
, (4:27)

1

K(n:2n−1−l+2)
=

(n : 2n−1− l+2)1

C3
+

(n : 2n−1− l+2)2

C1
+

(n : 2n−1− l+2)3

C2
, (4:28)

1

K(n+1:2n−2l+2)
=

(n+1:2n−2l+2)1

C3
+

(n+1:2n−2l+2)2

C1
+

(n+1:2n−2l+2)3

C2
.
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C( n+1:l-1)

K(n:2n-1- l+2)

K(n:2n-1-l+1)

K(n+1:2n-2l+2)

C(n+1:l)

C1
C

0

a1

p1

a2

C(n+2:m)

Fig 4-4

Hence, also in this case, by Corollary 3.3, we can calculate C(n+2:m) as follows:

C(n+2:m)

=
K(n+1:2n−2l+2)

{
K(n:2n−1−l+1)+K(n:2n−1−l+2)

}
{K(n:2n−1−l+1)

C(n+1:l)

}{
K(n:2n−1−l+2)+K(n+1:2n−2l+2)

}
+

{K(n:2n−1−l+2)

C(n+1:l−1)

}{
K(n:2n−1−l+1)−K(n+1:2n−2l+2)

}

=

{ 1

K(n:2n−1−l+1)
+

1

K(n:2n−1−l+2)

}
1

C(n+1:l)

{ 1

K(n+1:2n−2l+2)
+

1

K(n:2n−1−l+2)

}
+

1

C(n+1:l−1)

{ 1

K(n+1:2n−2l+2)
−

1

K(n:2n−1−l+1)

}. (4:29)

By (4:27) and (4:28),

1

K(n:2n−1−l+1)
+

1

K(n:2n−1−l+2)
=

(n :2n−1− l+1)1+ (n :2n−1− l+2)1

C3

+
(n :2n−1− l+1)2+ (n :2n−1− l+2)2

C1
+

(n :2n−1− l+1)3+ (n :2n−1− l+2)3

C2
.

In this identity,

(n : 2n−1− l+1)1+ (n : 2n−1− l+2)1

= [2n : 2n− l][2n : 2n− l+1]+ [2n : 2n− l+1][2n : 2n− l+2]

= [2n : 2n− l+1]
(
[2n : 2n− l]+ [2n : 2n− l+2]

)
.

We put l− 1 = 2p(2l′ + 1) (p, l′ ∈ Z≥0). Then, there exists some integer k1 such that 2n − l+ 1 =
2p(2k1+1). By Lemma 4.2,

(n : 2n−1− l+1)1+ (n : 2n−1− l+2)1 = (2p+1)[2n : 2n− l+1]2.

Similarly, we have

(n : 2n−1− l+1)2+ (n : 2n−1− l+2)2 = (2p+1)[2n : 2n−1− (l−1)]2,

(n : 2n−1− l+1)3+ (n : 2n−1− l+2)3 = (2p+1)[2n : l−1]2.
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Hence we have

1

K(n:2n−1−l+1)
+

1

K(n:2n−1−l+2)

= (2p+1)
( [2n : 2n− l+1]2

C3
+

[2n : 2n−1− (l−1)]2

C1
+

[2n : l−1]2

C2

)
. (4:30)

Meanwhile, in the same way as (4:20), (4:21), we have the following results:

1

K(n+1:2n−2l+2)
−

1

K(n:2n−1−l+1)
=

[2n :2n−l+1]2

C3
+

[2n :2n−1−(l−1)]2

C1
+

[2n : l−1]2

C2
. (4:31)

1

K(n+1:2n−2l+2)
+

1

K(n:2n−1−l+2)

= 2(p+1)
( [2n :2n−l+1]2

C3
+

[2n :2n−1−(l−1)]2

C1
+

[2n : l−1]2

C2

)
. (4:32)

We substitute (4:30), (4:31), (4:32) into (4:29), then we have

1

C(n+2:m)
=

2(p+1)

2p+1

1

C(n+1:l)
+

1

2p+1

1

C(n+1:l−1)
.

We substitute (4:25), (4:26) into this identity. Then we have

1

C(n+2:m)
=

2p+2

2p+1
(n+1 : l)1+

1

2p+1
(n+1 : l−1)1

C1

+

2p+2

2p+1
(n+1: l)2+

1

2p+1
(n+1: l−1)2

C2
+

2p+2

2p+1
(n+1: l)3+

1

2p+1
(n+1: l−1)3

C3
.

In this identity,

2p+2

2p+1
(n+1 : l)1+

1

2p+1
(n+1 : l−1)1

=
[2n+1 : 2n+ l−1]

2p+1

{
[2n+1 : 2n+ l−2]+ (2p+2)[2n+1 : 2n+ l]

}
=

[2n+1:2n+ l−1]

2p+1

{
[2n+1:2n+ l]+ [2n+1:2n+ l−2]+ (2p+1)[2n+1:2n+ l]

}
· · · ⟨6⟩.

Then, there exists some integer k2 such that 2n+ l−1 = 2p(2k2+1). By Lemma 4.2,

⟨6⟩ =
[2n+1 : 2n+ l−1]

2p+1

{
(2p+1)[2n+1 : 2n+ l−1]+ (2p+1)[2n+1 : 2n+ l]

}
= [2n+1 : 2n+ l−1]

(
[2n+1 : 2n+ l−1]+ [2n+1 : 2n+ l]

)
= [2n+2 : 2n+1+2l−2][2n+2 : 2n+1+2l−1]

= [2n+2 : 2n+1+ (m−1)][2n+2 : 2n+1+m] = (n+2 : m)1 . (4:33)
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Similarly,

2p+2

2p+1
(n+1 : l)2+

1

2p+1
(n+1 : l−1)2 = (n+2 : m)2. (4:34)

Furthermore,

2p+2

2p+1
(n+1 : l)3+

1

2p+1
(n+1 : l−1)3 = (n+2 : m)3. (4:35)

Hence, also in this case, by (4:33), (4:34) and (4:35), we have

1

C(n+2:m)
=

(n+2 : m)1

C1
+

(n+2 : m)2

C2
+

(n+2 : m)3

C3
.

(3) Suppose m = 1. In Figure 4-5, C(n+2:1) inscribes C(n+1:1) and circumscribes C3, where C(n+1:1)

is the 1st tangent circle from a1 with rank n+1 in C1. Then the inverse image of C(n+1:1), C(n+2:1)

under F1 are K(n:2n−1), K(n+1:2n) respectively, where K(n:2n−1) is the (2n−1)th tangent circle from
a3 with rank n in C3, and K(n+1:2n) is the (2n)th tangent circle from a3 with rank n+ 1 in C3.
Note that the inverse image of C3 under F1 is C31. By (4:7) and the assumption of induction
(4 : 8), (4 : 9), (4 : 10), (4 : 11), (4 : 12), (4 : 13),

1

C(n+1:1)
=

(n+1 : 1)1

C1
+

(n+1 : 1)2

C2
+

(n+1 : 1)3

C3
=

n+1

C1
+

0

C2
+

n

C3
,

1

C3
=

0

C1
+

0

C2
+

1

C3
,

1

K(n:2n−1)
=

(n : 2n−1)1

C3
+

(n : 2n−1)2

C1
+

(n : 2n−1)3

C2
=

n

C3
+

n−1

C1
+

0

C2
,

1

C31
=

2

C1
+

0

C2
+

1

C3
,

1

K(n+1:2n)
=

(n+1 : 2n)1

C3
+

(n+1 : 2n)2

C1
+

(n+1 : 2n)3

C2
=

n+1

C3
+

n

C1
+

0

C2
.

Hence, also in this case, we can calculate C(n+2:1) by Corollary 3.3 as follows:

1

C(n+2:1)
=

1

C(n+1:1)

( 1

K(n+1:2n)
+

1

C31

)
+

1

C3

( 1

K(n+1:2n)
−

1

K(n:2n−1)

)
( 1

K(n:2n−1)
+

1

C31

) . (4:36)

In this identity,

1

K(n:2n−1)
+

1

C31
=

n+1

C1
+

n+1

C3
= (n+1)

( 1

C1
+

1

C3

)
,

1

K(n+1:2n)
+

1

C31
=

n+2

C1
+

n+2

C3
= (n+2)

( 1

C1
+

1

C3

)
,

1

K(n+1:2n)
−

1

K(n:2n−1)
=

1

C1
+

1

C3
.
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C1

C(n+1:1)
C(n+2:1)

K(n :2n-1)

K(n+1:2n)

C31

C2

C3

C

0

a2

a3

p1

Fig 4-5

We substitute these identities into (4:36). Then we have

1

C(n+2:1)
=

1

C(n+1:1)
(n+2)

( 1

C1
+

1

C3

)
+

1

C3

( 1

C1
+

1

C3

)
(n+1)

( 1

C1
+

1

C3

) =
n+2

n+1

1

C(n+1:1)
+

1

n+1

1

C3

=
n+2

n+1

(n+1

C1
+

n

C3

)
+

1

n+1

1

C3
=

n+2

C1
+

n+1

C3

=
(n+2 : 1)1

C1
+

(n+2 : 1)2

C2
+

(n+2 : 1)3

C3
.

(4) Suppose m = 2n. In Figure 4-6, C(n+2:2n) inscribes C31 in C1 and circumscribes C21 in C1.
Then, the inverse image of C31 under F1 is C3, the inverse image of C21 under F1 is C2, and the
inverse image of C(n+2:2n) under F1 is K(n+1:1), which is the 1st tangent circle from a3 with rank
n+1 in C3. By (4:7) and the assumption of induction,

1

C31
=

2

C1
+

0

C2
+

1

C3
,

1

C3
=

0

C1
+

0

C2
+

1

C3
,

1

C21
=

2

C1
+

1

C2
+

0

C3
,

1

C2
=

0

C1
+

1

C2
+

0

C3
,

1

K(n+1:1)
=

(n+1 : 1)1

C3
+

(n+1 : 1)2

C1
+

(n+1 : 1)3

C2
=

n+1

C3
+

n

C2
.

Hence, we can calculate C(n+2:2n) by Corollary 3.3 as follows:

1

C(n+2:2n)
=

1

C31

( 1

K(n+1:1)
+

1

C2

)
+

1

C21

( 1

K(n+1:1)
−

1

C3

)
( 1

C3
+

1

C2

) . (4:37)
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a1

a2
a3

Fig 4-6

We substitute the following identities into (4:37).

1

K(n+1:1)
+

1

C2
=

( n

C2
+

n+1

C3

)
+

1

C2
= (n+1)

( 1

C2
+

1

C3

)
,

1

K(n+1:1)
−

1

C3
=

( n

C2
+

n+1

C3

)
−

1

C3
= n

( 1

C2
+

1

C3

)
.

Then we have

1

C(n+2:2n)
=

1

C31
(n+1)

( 1

C2
+

1

C3

)
+

1

C21
n
( 1

C2
+

1

C3

)
( 1

C2
+

1

C3

) = (n+1)
1

C31
+n

1

C21

= (n+1)
( 2

C1
+

1

C3

)
+n

( 2

C1
+

1

C2

)
=

2(2n+1)

C1
+

n

C2
+

n+1

C3
.

Meanwhile,

(n+2 : 2n)1 = [2n+2 : 2n+1+2n−1][2n+2 : 2n+1+2n]

= [2n+2 : 2n+1+2n−1][4 : 3] = 2[2n+2 : 3 ·2n−1].

Here we have

[2n+2 : 3 ·2n−1] = [2n+1 : 3 ·2n−1−1]+ [2n+1 : 3 ·2n−1]

= [2n+1 : 3 ·2n−1−1]+ [4 : 3] = [2n+1 : 3 ·2n−1−1]+2,

which implies that
{
[2n+2 : 3 · 2n − 1]

}∞
n=1

is an arithmetic sequence with the initial term [23 :
3 ·2−1] = [8 : 5] = 3 and common difference 2. Hence we have

[2n+2 : 3 ·2n−1] = 3+ (n−1)·2 = 2n+1.
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Therefore we have

(n+2 : 2n)1 = 2(2n+1),

(n+2 : 2n)2 = [2n+2 : 2n−1][2n+2 : 2n] = [2n : 2n−1] = n,

(n+2 : 2n)3 = [2n+2 : 2n+1− (2n−1)][2n+2 : 2n+1−2n]

= [2n+2 : 2n+1][2n+2 : 2n] = [2n+1 : 2n+1] = n+1.

Hence, also in this case,

1

C(n+2:2n)
=

(n+2 : 2n)1

C1
+

(n+2 : 2n)2

C2
+

(n+2 : 2n)3

C3
.

From the above mentioned, all the radii of the mth tangent circles (1 ≤ m ≤ 2n) from a1 with rank
n+2 in C1,

1

C(n+2:m)
=

(n+2 : m)1

C1
+

(n+2 : m)2

C2
+

(n+2 : m)3

C3
. (4:38)

To complete the proof of Theorem 4.4, we must prove that all the radii of the mth tangent circles
(2n+1 ≤ m ≤ 2n+1) from a1 with rank n+2 in C1 are also expressed by (4:38). Although it can be
proved in the same way as in the case 1 ≤ m ≤ 2n, we will prove it by using the result in the case
1 ≤ m ≤ 2n.

C C

C1 C1
C(n+2:m) C(n+2:m)

C2

C2C3

C3

a1

a1

0
0

a2

a2

a3 a3

Fig 4-7 Fig 4-8

In Figure 4-7, let C(n+2:m) be the radius of the mth tangent circle (2n + 1 ≤ m ≤ 2n+1) from a1

with rank n+ 2 in C1. We symmetrically move Figure 4-7 with respect to the real axis to obtain
Figure 4-8. Then, C(n+2:m) is the (2n+1−m+1)th tangent circle (1 ≤ 2n+1−m+1 ≤ 2n) from a2 with
rank n+2 in C1. Hence, by replacing C3 with C2, and C2 with C3 in (4:38), we have

1

C(n+2:m)
=

(n+2:2n+1−m+1)1

C1
+

(n+2:2n+1−m+1)2

C3
+

(n+2:2n+1−m+1)3

C2
.
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In this identity,

(n+2 : 2n+1−m+1)1 = [2n+2 : 2n+1+2n+1−m][2n+2 : 2n+1+2n+1−m+1]

= [2n+2 : 2n+2−m][2n+2 : 2n+2− (m−1)]

= [2n+2 : 2n+1+m][2n+2 : 2n+1+ (m−1)] = (n+2 : m)1 ,

(n+2 : 2n+1−m+1)2 = [2n+2 : 2n+1−m][2n+2 : 2n+1− (m−1)] = (n+2 : m)3 ,

(n+2 : 2n+1−m+1)3 = [2n+2 : 2n+1− (2n+1−m)][2n+2 : 2n+1− (2n+1−m+1)]

= [2n+2 : m][2n+2 : m−1] = (n+2 : m)2 .

Therefore,

1

C(n+2:m)
=

(n+2:2n+1−m+1)1

C1
+

(n+2:2n+1−m+1)2

C3
+

(n+2:2n+1−m+1)3

C2

=
(n+2 : m)1

C1
+

(n+2 : m)2

C2
+

(n+2 : m)3

C3
.

Now, we have completed the proof of Theorem 4.4. □

Corollary 4.5. For (n :m)1, (n :m)2 and (n :m)3 (m = 1,2, · · · ,2n−1) in Definition 4.3,

π

3
√

3
= lim

n→∞

2n−1∑
m=1

1

(n : m)1+ (n : m)2+ (n : m)3
. (4:39)

Proof. Under the setting in Theorem 4.4, let △a1a2a3 be a regular triangle. Then since C1 =C2 =

C3 =
√

3, we have

2π

3
= lim

n→∞

2n−1∑
m=1

2C(n:m) = lim
n→∞

2n−1∑
m=1

2
√

3

(n : m)1+ (n : m)2+ (n : m)3
.

Hence we have the result. □

One of the referees pointed out that Corollary 4.5 may have relationship with the results in
[1, 3]. We would like to study this problem for future research.
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