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1Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, 920-1192, Japan
2Faculty of Mathematics and Physics, Institute of Science and Engineering, Kanazawa University,

Kanazawa, 920-1192, Japan

(Received June 26, 2018 and accepted in revised form August 9, 2018)

Abstract We develop a numerical method to estimate the average speed of the free boundary
in a Hele-Shaw problem with periodic coefficients in both space and time. We test the accuracy
of the method and present a few examples. We show numerical evidence of flat parts (facets)
on the free boundary in the homogenization limit.
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1 Introduction

Let K ⊂ RN , N ∈ N, be a nonempty closed set with a smooth boundary and let Ω0 ⊃ K be an open
set with a smooth boundary. In what we call the Hele-Shaw problem, we are to find the family of
open sets {Ωt}t≥0 that evolves with the outer normal velocity

V = g(x, t)|Du(x, t)| x ∈ ∂Ωt , (1.1)

where u = u(x, t) is at each time t ≥ 0 the solution of the Laplace equation
−∆u(·, t) = 0 in Ωt \K

u(·, t) = 0 on ∂Ωt

u(·, t) = 1 on ∂K,

(1.2)

and g = g(x, t) is a given positive continuous function. Here Du = (ux1 , . . . ,uxN ) is the spatial
gradient and ∆u = ux1x1 + · · ·+uxNxN is the Laplacian.

In two dimensions, the Hele-Shaw problem is a popular model of a flow of an incompressible
fluid in between two close parallel plates known as the Hele-Shaw cell, see [17, 19]. It naturally
generalizes to an arbitrary dimension and we refer to it by the same name in this paper. In three
dimensions, in particular, it is a model of a flow of an incompressible fluid through a porous
medium. The quantities have the following meaning: u(x, t) is the pressure of the flowing fluid at a

∗Corresponding author Current address: School of Computing, Telkom University, Bandung, Indonesia.
Email: irmapalupi@telkomuniversity.ac.id
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given point x and a given time t, which fills the domain Ωt at time t. ∂Ωt is the interface between
the fluid and the air, and it is a free boundary. We neglect the surface tension effects and therefore
we can normalize the pressure to u = 0 on ∂Ωt . Keeping the pressure at a prescribed positive
value 1 on ∂K by injecting the fluid through ∂K, the fluid is advancing into the air. Darcy’s law
states that the velocity of the fluid is proportional to −Du. Since the free boundary is a level set of
u, its normal velocity is proportional to |Du|. One can think about 1

g(x,t) as the depth of holes that
the liquid must fill at the free boundary while it is advancing. We allow the depth to change with
time.

In recent years, there has been a lot of interest to understand the averaging behavior in evolu-
tionary problems with oscillating coefficients in both space and time [7, 11, 20]. In particular, the
second author considered the homogenization of the Hele-Shaw problem (1.1) in [16]. It was also
observed that non-periodic, fractal like variations in the flow lead to anomalous diffusion in Stefan
and Hele-Shaw problems [1].

The goal of the homogenization approach is to understand how g= g(x, t) influences the average
free boundary velocity. Clearly, we can observe an averaging behavior only if g has a special
structure, for example if g is periodic. We investigate this in the homogenization limit, that is, when
the scale of these oscillations ε → 0. Therefore we will assume that g is periodic in both x and t
with period 1, that is

g(x, t) = g(x+ξ , t + τ) for all ξ ∈ ZN ,τ ∈ Z,

and for scale ε > 0 we introduce the rescaled gε(x, t) := g( x
ε
, t

ε
). Note that in general scaling

g(εαx,εβ t) is possible, but it leads to a simpler behavior than this critical scaling α = β , see for
example [15]. Keeping all other parameters fixed, for every given ε > 0 we get a solution {Ωε

t }t≥0,
uε of (1.1) with g = gε . The goal is to identify the homogenization limit ε → 0 of these solutions.

We shall denote

Ω =
⋃
t≥0

Ωt ×{t} and Ω
ε :=

⋃
t≥0

Ω
ε
t ×{t}.

In [16], under certain regularity assumptions on the data K, Ω0 and g, it was proved that there
exist limits {Ωt}t≥0 and u such that uε → u in the sense of half-relaxed limits and ∂Ωε → ∂Ω in
Hausdorff distance. Furthermore, the pair (Ω,u) is the unique solution of the homogenized problem
in which Ω evolves with the normal free boundary velocity

V = r(Du) x ∈ ∂Ωt , (1.3)

and u is again the solution of (1.2), where r : RN → R is a nonnegative function that depends only
on g.

A straightforward modification of the arguments in [16] shows the same homogenization result
if the Dirichlet boundary condition on ∂K in (1.2) is replaced by a Neumann boundary condition
∂u
∂ν

(·, t) = 1, where ν is the inner unit normal to ∂K.
However, there does not seem to be any explicit formula for r(q), and it is not even known

whether r is continuous in general. It is only known that r∗(a1q) ≤ r∗(a2q) for any 0 < a1 < a2

and any q ∈ RN \{0}, where r∗ and r∗ denote the upper and lower semicontinuous envelopes of r,
respectively. See [16] for more details. Formal calculations indicate that r(q) is in general only
1
2 -Hölder continuous if g is smooth and r(q) might be discontinuous if g is only Hölder [4, 10]. Our
goal is to estimate r(q) numerically. We are in particular interested in whether the homogenized
problem has solutions whose free boundary develops flat parts (facets). We propose an efficient
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numerical method to estimate r(q) in dimension N = 2 and present some numerical results. Our
method naturally generalizes to any dimension but we discuss only the two dimensional case for
simplicity.

Outline

In the next section, we first discuss the one-dimensional setting to give a motivation for our
numerical method to estimate r(q) in two dimensions, which is then introduced in Section 3. In
Section 4, we present a few results of the numerical computation.

2 The Hele-Shaw problem in one dimension

To motivate our work, let us briefly discuss the behavior of the Hele-Shaw problem (1.1)–(1.2) in
one dimension. Let K = (−∞,0] and Ω0 = (−∞,y0), and we use the boundary condition uε

x(0, t) = q
on ∂K = {0} for some q < 0 in (1.2). Then Ωε

t = (−∞,yε(t)) for some yε > 0. The solution of
Laplace’s equation is uε(x, t) = q(x− yε(t)) in this case. The free boundary velocity equation for
Ωε simplifies to {

(yε)′(t) = g( yε (t)
ε

, t
ε
)|q|, t > 0,

yε(0) = y0,
(2.1)

which is a simple initial-value problem for an ordinary differential equation (ODE). It is known,
see [6, 15], that yε converges locally uniformly as ε → 0+ to the solution y of the ODE{

y′(t) = r(q), t > 0,

y(0) = y0,

where r : R→ R is determined only by g. This equation has the unique solution y(t) = y0 + tr(q).
We can therefore estimate r(q) numerically by solving (2.1) for a small ε > 0 and finding

r(q) = y(1)− y0 ≈ yε(1)− y0.

By a scaling argument, this can be shown equivalent to solving (2.1) with ε = 1 for a large time
T � 1 and then finding

r(q) =
y(T )− y0

T
≈ y1(T )− y0

T
.

Since (2.1) can be efficiently solved numerically, we can estimate r(q) rather easily.
The actual form of r(q) is known only in certain cases [15]:

• g(x, t) = g(t): if g is a 1-periodic function of t only, then r(q) = 〈g〉|q|, where 〈g〉=
∫ 1

0 g(t) dt
is the average of g.

• g(x, t) = g(x): if g is a 1-periodic function of x only, then r(q) = 1
〈 1

g〉
|q|, where

〈
1
g

〉
=∫ 1

0
1

g(x) dx is the average of 1
g .

If g depends on both x and t nontrivially, the explicit form of r(q) is not known and in fact it
can be very complicated, see Figure 1 for an example. The number r(q) is related to Poincaré’s
rotation number of a dynamical system corresponding to the ODE (2.1), see for instance [7] and
the references therein.
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Figure 1: Sample r(q) in one dimension for g(x, t) = sin(2π(x+ t))+ sin(2π(x+3t))+3. Note the pinning
intervals at speeds 2k− 1 for k = 1,2, . . . ,5. The graph was computed numerically using the method in
Section 2.

Nonetheless, we can still find the value of r(q) at least for particular q. Particularly interesting
is the existence of intervals of constant velocity, which we call pinning intervals. See also [10] for
a related problem on a droplet motion.

Proposition 2.1. Suppose that g(x, t) = f (x− t) where f = f (x) is a positive periodic Lipschitz
continuous function. Then r(q) = 1 for q ∈ [− 1

min f ,−
1

max f ].

Proof. Let L > 0 be a period of f . Fix q ∈ [− 1
min f ,−

1
max f ]. Since 1

|q| ∈ [min f ,max f ], there exists

ξ ∈ R such that f (x0) =
1
|q| for all x0 ∈ ξ +LZ. But yε(t) = εx0 + t is then a solution of (2.1)

for any x0 ∈ ξ +LZ and ε > 0. By uniqueness of (2.1) (comparison principle), we conclude that
yε (T )−yε (0)

T = 1 for any ε > 0 and therefore r(q) = 1.

In higher dimensions, if g is time-independent, then it was shown in [8, 18] that the solutions
of (1.1) converge to the solutions of the homogenized problem (1.3) with r(q) = 1

〈 1
g〉
|q| as in

the one-dimensional case. A simple scaling argument shows that also g = g(t) homogenizes to
r(q) = 〈g〉|q|.

3 Estimating the homogenized velocity in two dimensions

In this section we propose a numerical method to estimate the homogenized velocity r = r(q) in
(1.3), with a focus on dimension N = 2. In contrast to the one-dimensional situation, the shape of
the free boundary ∂Ωε

t is in general not flat in two dimensions and therefore the solution of (1.2) is
not a linear function anymore. We therefore have to solve the full problem to estimate r(q). We
first observe that for a given q ∈ RN the moving plane

Pq(x, t) := |q|
(

r(q)t− x · q
|q|

)
x ∈ RN , t ∈ R,

Ωq :=
{
(x, t) : Pq(x, t)> 0

}
=

{
(x, t) : x · q

|q|
< r(q)t

}
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Figure 2: Neumann problem (3.5) in 2D case to estimate the value of r(q).

satisfies the homogenized free boundary velocity law (1.3) with u = Pq,r and Ω = Ωq.
Let us suppose that q = (q1,0) for some q1 < 0. We consider the Hele-Shaw problem with

K := (−∞,0]×R ⊂ Ω0 := (−∞,L0)×R ⊂ R2 for some fixed L0 > 0, with Neumann boundary
condition ux1(0,x2) = q1 for all x2 ∈ R. If we denote the canonical basis of R2 by {e1,e2}, clearly
(Ω,u) = (Ωq +L0(e1,0),Pq(·−L0e1, ·)) is a solution of the homogenized problem (1.3)–(1.2) with
the above initial and boundary data. Let Ωε , uε be the solution of the ε-problem with the same
boundary and initial data. By [16], we know that ∂Ωε → ∂Ωq +L0(e1,0) in Hausdorff distance.
Let us fix L1 > L0 and define the first time the free boundary of the solution of the ε-problem
touches the set {x1 = L1},

Tε := sup{t > 0 : Ω
ε
t ∩{x1 = L1}= /0}.

By the convergence in the Hausdorff distance, we see that Tε → L1−L0
r(q) as ε → 0. This allows us to

estimate r(q) by choosing 0 < ε � 1 and using

r(q)≈ L1−L0

Tε

.

We will find Tε numerically by solving the problem on a bounded domain. To this end, we
observe that if ε = 1

ω
for some ω ∈N sufficiently large, the uniqueness of solutions of the ε-problem

implies that Ωε , uε are 1-periodic in the x2-direction, that is, Ωε +(e2,0) = Ωε , uε(x+ e2, t) =
uε(x, t).

Therefore we introduce the numerical domain U = (0,1)×T, where T = R/Z is the one-
dimensional torus, and solve the Hele-Shaw problem on U with boundary conditions

Ω
ε +(e2,0) = Ω

ε ,

ux1(0,x2, t) = q1 0≤ x2 ≤ 1, t ≥ 0,

u(x1,x2 +1, t) = u(x1,x2, t) x ∈Ω
ε
t , t ≥ 0,

see Figure 2.
There are direct methods to solve the Hele-Shaw problem, however, for simplicity and efficiency,

we use the fact that the solution of the Hele-Shaw problem can be in the limit λ → 0 approximated
[12, 13] by the solution of the Stefan problem{

λut −∆u = 0 in Ω,

V = gε |Du| on ∂Ω,
(3.1)
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with initial condition u(·,0) = u0, where u0 is the 1-periodic-in-x2 solution of
−∆u0 = 0 in Ω0 \K

u0 = 0 on ∂Ω0,

∂x2u0 = q1 on {x2 = 0}.

This problem can be rewritten in the enthalpy formulation by introducing β (s) := max(s,0) and
solving formally for z : RN×R→ R the solution of

λ zt −∆β (z) =−
(

∂

∂ t
1
gε

)
χint{z<0} in U× (0,∞),

∂β (z)
∂x1

(0,x2, t) = q1 for x2 ∈ [0,1), t > 0,

z : 1-periodic in x2,

z(·,0) = u0χΩ0−
1

λgε(·,0)
χΩc

0
in U.

(3.2)

Here χ is the indicator function of a given set and int{z < 0} is the interior of the set {z < 0}. The
solution is understood in the sense of distributions. We can recover u as β (z) and Ω as {z > 0}.

If gε = gε(x), the well-posedness of problem (3.2) is well known from the theory of variational
obstacle problems, see for example [5, 18], and u = β (z) is continuous [3]. We do not address the
well-posedness when gε = gε(x, t), but show at least that (3.2) is equivalent to (3.1) with the same
boundary data for classical solutions.

Let us therefore assume that there exists a differentiable function s : Kc→ [0,∞), Ds 6= 0 for
t > 0, such that z ∈C2(Q+)∩C1(Q+)∩C1(Q−)∩C(Q−), z > 0 in Q+, z(x,s(x)) = 0 if s(x)> 0,
z < 0 in Q− where

Q± := {(x, t) : x ∈ Kc, t > 0,±(t− s(x))> 0}.

By z ∈ C(Q−) we understand the z has a limit denoted as z(x,s(x)−) as (y, t)→ (x,s(x)) along
sequences with t < s(y).

Assume that z satisfies (3.2) in the sense of distributions. Let us take a test function ϕ ∈
C∞

c (K
c× (0,∞)). We have

0 =
∫

Kc

∫
∞

0
λ zϕt +β (z)∆ϕ−

(
∂

∂ t
1
gε

)
χint{z<0}ϕ dx dt

=
∫

Q+
β (z)(λϕt +∆ϕ) dx dt +

∫
Q−

λ zϕt −
(

∂

∂ t
1
gε

)
ϕ dx dt =: I++ I−.

Integration by parts on the individual terms I± yields

I+ =
∫

Kc

∫
∞

s(x)
λβ (z)ϕt dt dx+

∫
∞

0

∫
{s(x)<t}

β (z)∆ϕ dx dt

=−
∫

Q+
(λ∂tβ (z)−∆β (z))ϕ dx dt−

∫
∞

0

∫
{s(x)=t}

Dβ (z) · Ds
|Ds|

ϕ dH n−1 dt,

where we used that z(x,s(x)) = 0 and that the unit outer normal vector to {x : s(x)< t} is Ds
|Ds| , and

I− =
∫

Q−

(
−λ zt −

(
∂

∂ t
1
gε

))
ϕ dx dt +

∫
Kc

λ z(x,s(x)−)ϕ(x,s(x)) dx.
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From this we immediately have that u = β (z) satisfies λut −∆u = 0 in Q+, and z =− 1
λgε in Q−.

In particular, z(x,s(x)−) =− 1
λgε (x,s(x)) . The coarea formula yields

∫
∞

0

∫
{s(x)=t}

Dβ (z) · Ds
|Ds|

ϕ dH n−1 dt =
∫

Kc
Dβ (z)(x,s(x)) ·Ds(x,s(x))ϕ(x,s(x)) dx.

Therefore ∫
Kc

(
− λ

λgε(x,s(x))
−Du(x,s(x)) ·Ds(x)

)
ϕ(x,s(x)) dx = 0.

But V = 1
|Ds| and −Du ·Ds = |Du||Ds| and therefore we conclude that

V = gε |Du|.

A numerical solution of problem (3.2) can be found efficiently by the method introduced by
Berger, Brézis and Rogers [2], in the form further studied by Murakawa [14]. We refer to this
scheme as the BBR scheme. Choosing a time step τ > 0, we iteratively find the sequences

{
uk
}

k≥1,{
zk
}

k≥0 of solutions of

λ µ
k−1uk− τ∆uk = λ µ

k−1
β (zk−1) in U,

∂uk

∂x1
(0, ·) = q1,

uk(1, ·) = 0,

uk : 1-periodic in x2,

(3.3a)

zk = zk−1 +µ
k−1(uk−β (zk−1))− τ

λ

(
∂

∂ t
1
gε

)
(·, tk− 1

2
)χint{zk−1<0}, (3.3b)

µ
k =

1
δ +β ′(zk)

, (3.3c)

for k = 1,2, . . ., with z0 := z(·,0). Here δ > 0 is a chosen regularization parameter that we discuss
below, and we define

β
′(s) :=

{
1, s > 0,

0, s≤ 0.

Note that we add the source − 1
λ

(
∂

∂ t
1
gε

)
(·, tk− 1

2
)χint{zk−1<0}, tk− 1

2
= (k− 1

2)τ , to the update of z
in (3.3b) rather than the problem (3.3a) as was done in [2]. This is to avoid any unwanted diffusion
in {z < 0} that would otherwise occur.

Let us comment on the choice of τ and δ . The time step restriction comes from the fact that the
free boundary can advance at most distance h (one node distance) in one time step. We therefore
take the time step τ < h

2Vmax
, where Vmax is some reasonable estimate on the maximum velocity of

the free boundary in the problem.
The maximum principle yields uk > 0 on U . The regularization parameter δ > 0 guarantees

a presence of a boundary layer in the neighborhood of the free boundary where uk is sufficiently
large so that z is increasing there. This boundary layer limits the resolution with which the function
gε := g( ·

ε
, ·

ε
) is resolved and hence we need to control its size. Let us estimate its width. Assuming
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a one-dimensional situation for simplicity, with free boundary position of zk−1 located at x1 = 0
with zk−1 < 0 for x1 > 0, (3.3a) simplifies in {x1 > 0} to

λ

δ
uk− τuk

x1x1
= 0,

and therefore the dominating term in the solution will be φ(x1) =Ce−
√

λ

δτ
x1 , where C ≈−q1

√
δτ

λ

so that the derivative φx1 is approximately q1 at x1 = 0.
From (3.3b), the total amount of energy deposited into the negative z per one time step is

therefore
∫

∞

0 zk− zk−1 dx1 =
1
δ

∫
∞

0 φ dx1 ≈ −q1
τ

λ
, which is as expected from Fourier’s law. We

need to choose δ > 0 so that the majority is deposited near the free boundary {x1 = 0}. The ratio

deposited in {a < x1} for some a > 0 is given by
∫

∞

a φ dx1/
∫

∞

0 φ dx1 = e−
√

λ

δτ
a. For this to be

equal to a given γ ∈ (0,1) with a = wh, w > 0, we need to take

δ =

(
w

logγ

)2
λh2

τ
.

We have not observed any ill effect if we choose small w, so we in general set w = 1, γ = 0.01,
which yields the formula

δ ≈ 4.7×10−2 λh2

τ
. (3.4)

Let us explain how we implement the update of z in the set {z < 0} in the BBR method (3.3b).
Since the set {z > 0} is monotonically increasing in time if z is the exact solution of (3.2), z =− 1

λgε

in {z < 0}. However, in the BBR method (3.3b), the value of zk is also influenced in
{

zk−1 < 0
}

by uk since uk > 0 in U by the comparison principle. On the other hand, uk decreases exponentially
with the distance from

{
zk−1 > 0

}
as observed above. We therefore make use of this fact and at

a given fixed point x, we set zk(x) = − 1
λgε (x,tk)

at the first time step k such that uk(x) > 10−3δ ,
where δ is the regularization parameter in (3.3c), and only at the later time steps we apply the
update (3.3b) at this node. This leads to a significant increase in the accuracy of the estimate
of r(q) as tested in Section 4, especially in a neighborhood of the pinning intervals. Note that
(3.3b) is approximately equivalent in

{
zk−1 < 0

}
∩
{

uk� δ
}

to a second-order accurate numerical
integration of the derivative of − 1

λgε . Used directly, it leads to a large error over a few periods of
gε . But the pinning interval, and the value r(q) in general, is very sensitive to maxgε and mingε as
indicated by Propostion 2.1. Hence to reach a reasonable accuracy, we use the numerical integration
only inside the boundary layer by implementing the above scheme.

Since we need to find the solutions of the Hele-Shaw problem for many different q over a large
time interval (relative to ε) to get a reliable estimate on r(q), it is important to develop an efficient
numerical method to solve the elliptic problem (3.3a) for uk. It turns out that a multigrid scheme for
the linear elliptic problem for uk works well even though µk−1 has a jump across the free boundary.

3.1 The multigrid method

In this section we focus on the linear elliptic problem
au−h2

∆u = f in U = (0,1)×T
ux1(0,x2) = q1 for x2 ∈ [0,1)

u(1,x2) = 0 for x2 ∈ [0,1)

u : 1-periodic in x2,

(3.5)
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where h > 0 will be the discretization step, a is a given bounded nonnegative function, and f is a
given bounded function.

We will choose M = 2p for some p ∈ N as the resolution and set h = 1
M and introduce xi = ih,

i = 0, . . . ,M. We discretize the PDE using the standard finite difference method with the central
difference on a 5-point stencil. We therefore look for vi, j, i, j = 0, . . . ,M− 1, that approximate
u(xi,x j). For the Neumann boundary condition, we use a ghost grid point assuming v−1, j =

v1, j−2q1h. This leads to the linear system

(4+ai, j)vi, j− vi−1, j− vi+1, j− vi, j−1− vi, j+1 = fi, j,

i = 1, . . . ,M−1, j = 0, . . . ,M−1,

(4+ai, j)v0, j−2v1, j− v0, j−1− v0, j+1 = f0, j−2q1h,

j = 0, . . . ,M−1,

vi,−1 = vi,M−1,

vi,M = vi,0,

vM, j = 0,

(3.6)

where fi, j := f (xi,x j) and ai, j := a(xi,x j).
To solve this system, we use the standard multigrid method, see for example [21]. We introduce

a sequence of spaces

V 2mh = R(M/2m−1)×(M/2m−1), m = 0, . . . , p.

On each of these we will solve the linear system with appropriately adjusted M. We need to
introduce the grid transfers. The restriction operator I2h

h : V h → V 2h is defined by the standard
weighted sum

(I2h
h vh)i, j =

vh
2i,2 j

4
+

vh
2i−1,2 j + vh

2i+1,2 j + vh
2i,2 j−1 + vh

2i,2 j+1

8

+
vh

2i−1,2 j−1 + vh
2i+1,2 j−1 + vh

2i−1,2 j+1 + vh
2i+1,2 j+1

16
,

where we assume the periodic extension in j and we assume that vh is even across i = 0, that is,

vh
−1, j = vh

1, j,

vh
i,−1 = vh

i,M−1, vh
i,M = vh

i,0.

Indeed, the error correction will satisfy the boundary condition ux1(0,x2) = 0.
The prolongation operator Ih

2h : V 2h→V h is the standard prolongation

(Ih
2hv2h)2i,2 j = v2h

i, j,

(Ih
2hv2h)2i+1,2 j =

1
2

(
v2h

i, j + v2h
i+1, j

)
,

(Ih
2hv2h)2i,2 j+1 =

1
2

(
v2h

i, j + v2h
i, j+1

)
,

(Ih
2hv2h)2i+1,2 j+1 =

1
4

(
v2h

i, j + v2h
i, j+1 + v2h

i+1, j + v2h
i+1, j+1

)
,

again assuming the periodic extension v2h
i,M = v2h

i,0.
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Table 1: Evolution of the residual in the multigrid method with M = 1024, h = 1/M, bh = 0, ai, j = 1000h2

if xi +0.1sin(6πx j)> 0.5 and ai, j = h2 otherwise, and fi, j = 0, with initial guess vh = 0.

iteration k 0 1 2 3 4∥∥r(k)
∥∥ 1.95×10−3 3.11×10−5 1.54×10−6 8.95×10−8 5.53×10−9

By A2mh we will denote the matrix of the linear system (3.6) for grid with resolution M/2m with
a2mh defined recursively as

a2h = 4I2h
h ah.

We perform the following multigrid V-cycle:

(a) k1 times iterate the smoother for Ahvh = bh with initial guess vh,(0), obtaining vh,(k1).

(b) Find the residual rh = bh−Ahvh,(k1)

(c) Restrict the right-hand side b2h = 4I2h
h rh.

(d) Solve A2he2h = b2h on a half-resolution grid recursively.

(e) Correct the approximation ṽh,(k1) = vh,(k1)+ Ih
2he2h.

(f) k2 times iterate the smoother for Ahvh = bh with initial guess ṽh,(k1).

The problem A1e1 = b1 is solved exactly.
To improve the convergence, we solve for e2h using two V-cycles, with initial guess e2h = 0.
As a smoother we implement the damped Jacobi method with damping constant ω = 2

3 . We
perform k1 = k2 = 4 relaxation iterations. This reduces the maximum norm of the residual by about
a factor of 10 per iteration, see Table 1.

To estimate the time complexity, we observe that the matrix multiplication and the application
of prolongation and restriction operators have each approximately the time complexity of a single
Jacobi iteration. With these parameters, a simple estimate places the time complexity of the V-cycle
at about 22 Jacobi iterations. Moreover, the method is parallelizable in a straightforward manner.
We did not explore this point since we need to run a large number of computations and therefore
can take advantage of a process-level parallelism.

3.2 Application of the multigrid solver to the BBR scheme

To find uk in (3.3a), we apply the above multigrid solver to (3.5) with a = λh2

τ
µk−1 and f =

λh2

τ
µk−1β (zk−1), and we use uk−1 as the initial guess. In our computations it is generally sufficient

to perform a fixed number of V-cycles per time step. We perform in general 1 to 3 V-cycles.

3.3 General direction

So far we have assumed that q = (q1,0) with q1 < 0. To handle general q ∈ R2 \{0}, we rotate the
coordinate system so that q is of this form. That is, instead of g we consider

g̃(x, t) = g(x1ζ + x2ζ
⊥, t),

where ζ⊥ = (−ζ2,ζ1) =
(

q2
|q| ,−

q1
|q|

)
.
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Of course, in general g̃ is not periodic in x2, unless there exist integers n1,n2 ∈ Z, n1n2 6= 0,
such that n1q1 + n2q2 = 0, that is, unless q is a rational direction. These are however the only
directions that we can consider numerically.

By taking σ = q1
n2

= −q2
n1

and m1 = n2, m2 = −n1, it can be easily seen that q is a rational
direction if and only if there exist σ > 0 and two integers m1,m2 ∈ Z such that q = (m1σ ,m2σ).
Let us show how we can choose ε so that the solution of the ε-problem is 1-periodic in the x2

direction. To this end, we shall find the minimal period of g̃ first. This is equivalent to finding the
smallest s > 0 such that sζ⊥ ∈ Z2.

Lemma 3.1. If m1 and m2 are coprime, then s = (m2
1 +m2

2)
1
2 is the smallest s > 0 such that

sζ⊥ ∈ Z2.

Proof. Note that ζ⊥ = (m2,−m1)

(m2
1+m2

2)
1
2

. Clearly

sζ
⊥ = (m2,−m1) ∈ Z2.

Now suppose that there is 0 < s̃ < s such that s̃ζ⊥ ∈ Z2. But then s̃
s sζ⊥ = s̃

s(m2,−m1) ∈ Z2. In
particular s̃

s ∈Q. Suppose that s̃
s =

p
q , where p,q are coprime. Since p

q < 1, q > 1 is a divisor of
both m1 and m2. But that is a contradiction with m1 and m2 being coprime.

Given a general q = (m1σ ,m2σ), it is therefore sufficient to choose

ε =
gcd(m1,m2)

d(m2
1 +m2

2)
1
2

for some integer d ∈ N, where gcd stands for the greatest common divisor, and the solution will
be 1-periodic in the x2 direction. Note that this limits the angular resolution of our method. For
example, near the x1-axis, to compute r(q) at q = (m1σ ,σ) near a fixed q̂ = (q̂1,0), we must take
ε < 1

m1
which requires large resolution M for small σ since m1 ≈ q̂1

σ
.

4 Numerical results

To test the numerical method, we estimate the homogenized velocity r(q) for a few simple functions
g. Namely, we consider

g(x, t) = sin(2π(x1 + t))+2, (4.1a)

g(x, t) = sin(2π(x1 + t))+ sin(2π(x2 + t))+3, (4.1b)

g(x, t) =
1
2

cos(2πt)
(

sin(2πx1)+ sin(2πx2)
)
+2, (4.1c)

g(x, t) = sin(2π(x1 + t))+ sin(2π(x1 +3t))+3. (4.1d)

By Proposition 2.1, the pinning interval with r(q) = 1 in (4.1a) is [1
3 ,1]×{0}. Note that while

(4.1c) has the form of a standing wave, it is in fact a superposition of four traveling waves moving
with speed 1 in directions (±1,0) and (0,±1).

We always take λ = 10−7, τ = h
8 and δ as in (3.4), and L0 = 0.1, L1 = 0.9. The values of r(q)

are estimated for a range of q = (m1σ ,m2σ), with σ = 6.4
M , m1,m2 ∈ Z. For given q, we determine

ε following Section 3.3 as

ε =
1

d(m2
1 +m2

2)
1
2
, d = max

(
1, round

(
9M

64(m2
1 +m2

2)
1
2

))
.
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This is done so that neighboring points have similar ε . Values σ smaller than the above lead to high
frequency oscillations in the estimate of r(q) since ε is then forced to be too small in proportion
to h = 1

M . We always use 2 V-cycles per time step, unless otherwise noted. These parameters
produce very consistent results across a wide range of resolutions 64≤M ≤ 1024 that we tested,
see Figures 3–7. In our numerical tests, the value of λ , if it is chosen sufficiently small, appears to
have a negligible influence on the results, well within the errors reported in Table 2 for example.

The computational time necessary to estimate a single r(q) is O(M3), and to produce a contour
plot with the above resolution σ is O(M5).

4.1 Discussion

We observed a number of pinning intervals for a few examples of coefficients g. The behavior of
r(q) in a neighborhood of the pinning intervals is surprisingly consistent across our computations.
Namely, the velocity is pinned to a constant value only along a single critical direction, and far
away from the pinning interval the value r(q) is proportional to |q| as in the time-independent case.
Moreover, r(q) appears to be only Lipschitz continuous at the points on the relative interior of the
pinning interval, see Figure 4. For the critical direction, this has a boosting effect for smaller |q|
and slowing effect for larger |q| along the pinning interval, compared to the nearby directions. We
observed that this leads to an appearance of a stable flat part (facet) of the free boundary in the
critical direction, see Figure 8.

In the particular case (4.1b), there is an indication of the appearance of a whole class of pinning
intervals near the main diagonal (1,1) as a sort of resonance between the pinning intervals in
directions (1,0) and (0,1), see Figure 5. Some of the level sets in the first quadrant have an
appearance of the level set of the `1 norm ‖p‖1 := |p1|+ |p2|, which is a typical example of a
so-called crystalline anisotropy. Somewhat surprisingly, no such effect is apparent in the case (4.1c)
with four traveling waves in the axis directions, see Figure 7.

Our estimate of r(q) appears to be first order accurate in M, see Table 2, and consistent when
changing the resolution and other parameters, see Figure 3 and Figure 8.
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Figure 3: (Top) The contour plot of r(q) with g(x, t) = sin(2π(x1 + t))+2. The pinning interval [ 1
3 ,1]×{0}

is apparent, see Proposition 2.1, where the average velocity is pinned to 1. The solid contours were obtained
with M = 256, while the dotted contours were obtained with M = 128. (Bottom) Detail of the pinning
interval computed with M = 512.
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. The free boundary is plotted at times t = 0.02m, m ∈ N. A facet seems to
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ε = 1

512 , while the dotted line is with M = 2048, ε = 1
128 . We used 1 V-cycle. (Bottom) Detail of the region
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Table 2: The maximum of the error of the numerical estimate of r(q) for g(x, t) = sin(2π(x1 + t))+ 2
as compared to the estimate of r(q) using the ODE method in one dimension described in Section 2 for
q = (q1,0), with a small sample of values q1 away from the ends of the pinning interval [ 1

3 ,1] for various
values of parameters M and ε . Our method appears to be first order accurate in M if ε is chosen appropriately.

M
ε−1

8 16 32 64 128
64 8.7×10−2 6.3×10−2 5.2×10−1 1.0×100 1.5×100

128 5.9×10−2 5.3×10−2 5.9×10−2 3.9×10−1 1.0×100

256 6.5×10−2 5.8×10−2 2.1×10−2 5.0×10−2 4.0×10−1

512 7.9×10−2 5.7×10−2 2.0×10−2 1.1×10−2 5.9×10−2
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