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Abstract Effects of the Fermi level smearing introducing temperature dependence of
energy-band occupation numbers were investigated in terms of magnetic anisotropy by us-
ing a density functional theory. In a perpendicular magnetization film Fe(0.7nm)/MgO, the
magnetocrystalline anisotropy shows a decrease with respect to the smearing temperature;
0.4mJ/m2 from 11K to 527K. This reduction is not negligible and is expected to partially
compensated by a reduction in the shape magnetic anisotropy, assuming reasonable values
of the Curie temperature and saturated magnetic moment. The resulting temperature depen-
dences in the total perpendicular magnetic anisotropy energy is in agreement with those of
available experimental data semi-quantitatively.

Keywords. Magnetocrystalline anisotropy, Shape anisotropy, First-principles electronic
structure calculation, Density functional theory

1 Introduction

Perpendicular magnetic anisotropy (PMA) has an important role for designs of better devices of
spin transfer torque recording magnetoresistive random access memory (STT-MRAM) [1, 2]. In
the approaches of both theory and experiment, a lot of progress has been made for developing func-
tionals or improving performances [3–12]. The properties of temperature dependence in PMA are
highly requested for designing ferromagnetic magnetic materials. Recently, the experimental work
by Xiang et al. showed a temperature effect of perpendicular magnetic anisotropy. This effect is a
reduction of 0.15 mJ/m2 in the case that the temperature decreases form 300K to 10K [10]. This
work motivates us to investigate temperature effects by theoretical approach. Up to now, there
are many works of theoretical approach for the systems of localized magnetic moments (single
ion-magnetic anisotropies) [13–15]. In these approaches, the magnetic anisotropy energy (K) was
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treated as a cubic polynomial function of magnetization (M). For the metallic epitaxial films, a
square function was employed at the low temperature [16,17]. The theoretical approaches showed
that K is proportional to M2 in case of L10-ordered FePt [18, 19]. The recent density functional
approach to disordered magnetic bulk alloys explains an anomalous temperature dependence of
magnetocrystalline anisotropy [20].

For the design of materials in emerging nanoscale memory and logic device, Alzate et al.
showed that in the system MgO/CoFeB/Ta-based MTJ [21], M as temperature dependence fitted
well with the Blöch law (T 3/2) [22]. In addition to this, K as temperature dependence fitted well
with a power law of M2 or similar one. Wen et al. also showed a similar behavior of temperature
dependence on M and K in Ru/Co2FeAl/MgO-based MTJ [23]. For the thinner films of several
iron monolayers, the temperature dependence of M was implied to change from T 3/2 to T 2 [24].

In the materials for perpendicular-MRAM devices, the property of PMA is mainly ascribed to
spin-orbit coupling (SOC) in the metallic electronic structure. The magnetocrystalline anisotropy
for metal has been estimated successfully since the 1980’s using density functional approaches.
The PMA of thin films has qualitatively or semi-quantitatively been explained. This is a conse-
quence of the fact that the PMA from SOC overcomes the magnetic shape anisotropy (SA) which
favors in-plane magnetization. The latter contribution to magnetic anisotropy has been investi-
gated for a long time, including its temperature-dependent property. However, the temperature
dependence of the magnetic anisotropy caused by metallic energy bands has not been investigated
very well, particularly for thin film systems.

In the present work, we investigated smearing effects on the Fermi level in terms of the
magnetic anisotropy energy of the metal slab system for magnetic devices, by means of a first-
principles calculation. These effects are expected to contribute to a temperature dependence in the
magnetic anisotropy caused by SOC. In combination with SA analyses, a saturating behavior in K
at room temperatures may be comprehended, compared with the available experimental data [10].

2 Method

2.1 General theory

Finite temperature effects can be taken into account in the band-energy by the Mermin’s ap-
proach [25]. In such kind of approaches a set of temperature-dependent electron occupations is
introduced. Using an analogy of quasi-one-particles, the total Hamiltonian of system H can be
divided into two parts; H = H0 +∆H, where H0 and ∆H represent quasi-one-electron’s part and
the other part, respectively. Schrödinger equation for H0 is represented as follow: H0ϕi = εiϕi,
where εi and ϕi are the eigenvalue and eigenwavefunction. ∆H contains all interactions between
quasi-one-electrons. The free energy of system at the temperature T is expressed as follows:

Ftot = ∑
i

fi (εi−µ)− kBT S+∆F +µNe , (2.1)

∆F = −kBT logTr [exp{−∆H/kBT}] , (2.2)

where Ne and µ are the number of electrons and chemical potential, fi is the occupation number
of band energy, defined as fi = 1/[exp{(εi− µ)/kBT}+ 1]. Note that ∑i fi = Ne. The second
term in Eq. (2.1) represents the entropic energy of non-interacting one-particles and S = ∑i si =

∑i y( fi), where y(x) = −{x logx+(1− x) log(1− x)}. The third term ∆F in Eq. (2.1) represents
the contributions from all the other interactions between electrons which are not included in the
first (one-particle) term. Ferromagnetism is stabilized by an exchange magnetic field (molecular
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Figure 1: (a) Computational slab system equipped with an effective screening medium (ESM), and (b)
Fermi level smearing effect in magnetic anisotropy energy (MAE) with respect to temperature. The symbols
of triangle and circle specify the data by dense and sparse meshes, respectively.

field) arising from the other magnetic moments. This effect is taken into account partially in εi and
∆F . The magnetic dipole-dipole interaction between electrons, contributing to the SA, is included
in ∆F .

In magnetic metals, the magnetic anisotropy largely depends on the details of electronic struc-
tures at the Fermi level. The theory of force theorem [26] clearly indicates that the one-particle
energy εi plays an important role in the estimation of magnetic anisotropy. As also indicated at
the first term in Eq. (2.1) the anisotropy energy may vary with the electron occupation fi which
smears the Fermi level as temperature increases. This smearing effect becomes large in case of
the electronic structure which has a set of flat bands (spiky in the one-particle density of states)
at the Fermi level. In particular, such feature can be found in low dimensional systems. In the
demonstration shown later, the system has fine electronic structures in the energy width with sev-
eral times of kBTr (Tr: room temperature) at the Fermi level. The approach along the free energy
of Eq. (2.1) needs an appropriate additional treatment to fully include the spin fluctuations of both
transverse and longitudinal components when discussing the temperature dependence of magneti-
zation [18, 19, 27].

2.2 Practical approach

The magnetic anisotropy also depends on the magnetic moment. As temperature increases, the
magnetic moment decreases, and thus the anisotropy energy often decreases. The main part of
such reduction may be realized by the contribution of SA. The temperature dependence of the
magnetic moment originates from the spin fluctuations. In order to evaluate it, one can take a
method based on the microscopic electronic structure [18,19]. However, for focusing the smearing
effect at the Fermi level and for simplicity, this work employs a well-known sophisticated model
as the temperature-dependent magnetization M(T ), as follows:

M(T ) = M0 y(T/T ∗), (2.3)

where y is a given function, M0 = M(0), and T ∗ is a sophisticated parameter, such as Curie tem-
perature (Tc). T ∗ is used as a sort of fitting parameters. In this work, due to the thinner magnetic
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slab, we employed y(T/T ∗) = 1− (T/T ∗)2 [24].
The magnetic anisotropy energy is presented as

K = Kb +Ksa, (2.4)

where Kb is from the band energy and Ksa from the SA. Kb is expressed as the energy difference
of free energy Fb between the different magnetization directions, such as [100](x-direction) and
[001](z-direction) [28]. The Fb is given as follows [29, 30] :

Fb = ∑
nk

fnk (εnk−µ)− kBT S+Ed +µNe , (2.5)

where Ed is the double counting term in the total energy [26]. Using Eq. (2.5),

Kb = F [100]
b −F [001]

b . (2.6)

Ksa is expressed as

Ksa =−µ0M2/2Ω+∆Kint
sa , (2.7)

where Ω and µ0 are the volume of magnetic slab and permeability of vacuum, respectively, and
∆Kint

sa is the interface contribution which is not included in the 1st term. ∆Kint
sa originates from

both the discreetness of stacking atomic layers [31] and the deviation from spherical atomic spin
moment density at the interface magnetic atoms [32]. These are due to the shape of magnetization
distribution, reducing the in-plane SA in ferromagnetic Fe layers.

2.3 Computational system

In the demonstration, we used the slab system, vacuum(0.79nm)/Cr(6ML)/Fe (5ML)/MgO(5M
L)/vacuum(0.79nm) (ML=atomic monolayer) [see Fig. 1 (a)]. At the Fe/MgO interface the Fe
atom was placed just next to the O atom due to its stability, and in the Cr and Fe layers the
body-centered layer-stacking sequence was used. The in-plane lattice constant extracted from
bulk Cr was employed. The effective screened medium (ESM) was introduced as an ideal metal.
It is for avoiding an artificial electric field caused by the periodic boundary condition along the
[001] direction [33]. The density functional calculation employs a fully relativistic (with spin-
orbit interaction) ultrasoft pseudopotentials and planewave basis [34], by using the generalized
gradient approximation [35]. We used a 32 × 32 × 1 (sparse) mesh for the k point sampling in
the estimations of Kb. At the low temperatures, unfortunately, the sparse mesh mentioned above
cannot give any convergence in the self-consistent calculation, and a 64 × 64 × 1 (dense) mesh
was also introduced. The difference from the sparse mesh appeared at the low temperatures, such
as less than or equal to 100-200 K, and becomes small at 300 K. The dense mesh requires a large
amount of computational source so that the number of calculated temperature points were limited
to a few.

3 Result and Discussion

3.1 Magnetic anisotropy from spin-orbit interaction

Figure 1(b) shows Kb per unit area as a function of T . These values are positive, contributing to
a perpendicular magnetic anisotropy as expected in a family of Fe/MgO interfaces [2, 3, 36], and
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Figure 2: (a) Band dispersion curves (left and center) and (b) partial density of states (right) for the
minority-spin-state 3d orbital on the interface Fe in the [001] magnetization system determined with
the temperature-dependent Fermi level smearings of 316 K (full curves and symbols) and 52.8 K (bro-
ken curves). The symbols specify the angular orbital components projected on the interface Fe atoms;
dxy,dx2−y2 ,d3z2−r2 (left) in blue, green, and red bullets, respectively, and dxz,dyz (center) in orange and yel-
low. The Fermi levels are adjusted to zero in the vertical axis with the horizontal full line, and the Fermi
energy (chemical potential µ) decreases by 0.11 eV as temperature. The inset figure in (b) shows the typical
data of εnk−µ with respect to the temperature at k = 0.33× Γ̄M̄ (vertical red arrow).

similar to the data (1.5 mJ/m2) from the experimental measurement at the room temperature for
the Fe thickness (tFe) of 0.7nm [12]. Such positive contribution may be attributed to the SOCs
between the orbital components of dxy and dx2−y2 , or dxz and dyz in the respective occupied and
unoccupied states [37]. The smearing effect decreases Kb monotonically by 0.38 mJ/m2 from 10.5
K to 527 K. This decreasing quantity is not negligible, implying one of important ingredients for
the temperature dependence of magnetic anisotropy.

3.2 Electronic structure

Kb decreasing with temperature is a consequence of electronic structure. To confirm the variation
property, in Fig. 2 we show the band dispersion curves and the partial density of states (PDOS)
for two different temperatures (52.8 K and 316 K). The eigenvalue with respect to the chemical
potential (εnk−µ) is increased roughly by 0.01 eV in almost all the Brillouin zone. In particular,
focusing the unoccupied states dominated by 3d orbitals at around 0.09 eV, the eigenvalue tends to
behave (εnk−µ) = ε0

nk−µ0 +αT 2, where ε0
nk and µ0 are the eigenvalue and chemical potential,

respectively, extrapolated to 0 K, and α is a positive constant (typical temperature dependence
of εnk− µ is shown in the inset of Fig. 2). Consequently, the quantity of 1/(εnk− µ) decreases
as temperature, implying a decrease in Kb considering the second-order perturbation formula for
spin-orbit interaction [37]. In the present case, the α is small so that αT 2/(ε0

nk− µ0) is much
smaller than the unity, showing a gradual temperature dependence in Kb like a linear, instead of
a complicated dependence. Quantitatively the decreasing rate by the Fermi level smearing should
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Figure 3: Total magnetic anisotropy energy (K) per unit area with respect to temperature. The symbols
of triangle, bullet, circle, diamond indicate the data of T ∗ = 900,1100,1300K for ∆Kint

sa = 0 and those of
cross and plus for T ∗ = 1300K and ∆Kint

sa /A = 0.09mJ/m2, where A is the interface area. The empty square
symbols specify the experimental data extracted from reference [10].

be canceled out partially by the other contributions so as to showing a gradual decline such as
observed in the experimental measurement [10].

3.3 Including shape magnetic anisotropy

In order to validate the smearing effects obtained above comparing them with the experimental
results, we had performed a simulation on K using the parameters of M0 and T ∗. In this simula-
tion we used the Fe layer thickness (tFe = 0.710nm). This tFe is comparable to those obtained by
the first-principles calculation. As a result the M0 can be fixed to the value which reproduces the
experimental magnetization at 300 K (M(300K) = 1.83 T [38]) [11]. We also found that, com-
paring the results of the T ∗s of 800, 900, 1000, 1100, 1200, 1300, and 1400K, the T ∗s between
1200K and 1300K give a reasonable fitting to the temperature dependence of available experimen-
tal data [10] except a temperature-independent value implying ∆Kint

sa . In Fig. 3, the total K per area
are plotted as temperature for the parameters of T ∗ = 900K, 1100K, and 1300K, where ∆Kint

sa = 0.
At the lower T ∗s, the in-plane SA becomes larger and the difference from the experimental data
also becomes large at the low temperatures.

In Fig. 3, the total K per unit area is also shown for a non-zero ∆Kint
sa . This plot implies that,

assuming the interface contribution of SA (∆Kint
sa /A = 0.09mJ/m2), K becomes close to the exper-

imental results. This quantitative assumption in ∆Kint
sa is not so far from a realistic contribution,

because the quadrupole atomic spin density of prolate type at the interface can reduce the in-plane
SA by an energy comparable to that in the free-standing Fe 1ML (0.10mJ/m2) [32]. Note that such
contribution does not depend on the total magnetization. On the fitting to another experimental
data of M(300K) = 2.09T [12], the set of parameters (∆Kint

sa /A = 0.35mJ/m2, T ∗ = 1400K) pro-
vides a reasonable temperature dependence in K (see Appendix). This parameter of ∆Kint

sa is not too
large, because the parameter originates from both interfaces in the Fe layer. Further investigations
on the origin of ∆Kint

sa are required for analyzing real magnetic interfaces.
Our analysis on the temperature dependence of K can predict a behavior at the higher tem-

peratures. As shown in Fig. 3, our result indicates that it increases as temperature increases after
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some temperature. Note that such behavior is a consequence that as temperature increaces, the
perpendicular Kb decreases and the in-plane SA (|Ksa|) also decreases more rapidly with a growth
of spin fluctuations. The behavior that the SA works as an enhancement of PMA or as a sup-
pressing origin in the reduction of PMA at higher temperatures, may be one of important general
interests in the thin ferromagnetic materials. Note that at further higher temperatures near Tc the
Mermin’s approach is no longer useful and should be corrected in accordance with existing large
spin-fluctuations [27]. In a further general treatment on magnetic anisotropy, temperature effects
originating from a magnetoelastic anisotropy should be considered.

In our analysis, the parameter of T ∗ is relatively flexible, compared with the other parameter
of M0. T ∗ around 1300K seems to be suitable to explain the available experimental data. If
T ∗ is regarded as Tc, this Tc (= 1300K) is comparable to those of bcc Fe (Tc = 1043K). When
considering a Tc formula in the approach of localized spin moment, Tc is proportional to both the
exchange coupling constant and the square of magnetization. Roughly speaking, the effective Tc

may increase, because the magnetic moments on Fe atom tend to be enhanced at the interfaces.
Further information on Tc should be required in the computational approach as well as in the
approaches of phenomenological theory and experimental measurement.

Our present approach to a temperature dependent MAE may indicate a correspondence with an
available experimental data. However, it is still unclear that the spin fluctuation at finite tempera-
tures is fully considered. This is because the electronic structure calculation, which is a basis of
the MAE originating from the spin-orbit interaction, does not include effects of finite temperature
in the atomic spin configuration, while the spin configuration at finite temperatures should be an
ensemble of various directions for atomic magnetic moments. The last picture is a reason why the
strength of total magnetization tends to decrease as temperature increases. An improved approach
to MAE estimation is required for a computational material design of magnetic materials.

4 Summary

We performed the first-principles calculations on the MAE from the band energy contribution us-
ing the temperature-dependent Fermi level smearing in the Fe(5ML)/MgO slab. The contribution
of the MAE decreases by 0.4 mJ/m2 as temperature from 10.5K to 527K. When employing the
simple formula for the SA and assuming the experimental saturated magnetization with the appro-
priate temperature dependence for ultra-thin films, the total MAE shows a nearly flat part around
the room temperature. This theoretical analysis may predict an increase of the perpendicular total
MAE at higher temperatures. Such increase may be a possible general consequence of the balance
between a large perpendicular band energy contribution and small in-plane shape anisotropy. The
present work provides a new pathway to understand origins of a temperature dependence in MAE.
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A Appendix: Simulation on shape anisotropy

The reduced magnetization, M(T )/M(0), is expressed as a function of the reduced temperature,
T/T ∗. In the simulations on SA, we tried to choose the following functions [22, 24, 39, 40] :

M(T ) = M(0)

[
1−
(

T
T ∗

)2
]
, (A.1)

M(T ) = M(0)

[
1−
(

T
T ∗

)3/2
]
, (A.2)

M(T ) = M(0)

√1−
(

T
T ∗

)2
 , (A.3)

M(T ) = PS

(
T
T ∗

)
M(0)

[√
1−
(

T
T ∗

)]
, (A.4)

where

PS(T/T ∗) =
[
1+0.410721(T/T ∗)+1.65224(T/T ∗)2−5.60792(T/T ∗)3 +9.67475(T/T ∗)4

−9.30572(T/T ∗)5 +4.74404(T/T ∗)6−1.00258(T/T ∗)7] . (A.5)

These functions are shown in Fig. 4. Using the assumed function of M(T ), the Total MAE (K)
as a function of temperature is fitted to an experimental data [10]. M(0) was determined so as
to reproduce an experimentally measured magnetization at 300K; M(300K) = 1.83T [11] and
2.09T [12] were used in Figs. 5 and 6, respectively.

The total magnetic anisotropy for each M(T ) function is presented in Fig. 5, compared with the
experimental data extracted from Xiang et al. [10]. The functions of Eqs. (A.1), (A.2), (A.3), and
(A.4) are used in Figs. 5 (a), (b), (c), and (d), respectively, with the experimental magnetization
[M(300K)=1.83T] extracted from Ref. [11]. Various T ∗s were used from 800 to 1400K. In Fig. 5,
the resulting data are presented only for 900, 1100, and 1300K. The choice of the first M(T ) func-
tion (which is proportional to T 2) could reproduce the tendency of experimental data, especially
for the case of T ∗=1300K. The flat part of total MAE is remarkably reproduced when the tem-
perature increases from 200K to 300K. As shown in Fig. 5 (a), the choice of lower T ∗ gives an
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Figure 5: Total magnetic anisotropy energy (K) per unit area with respect to temperatures; (a), (b), (c),
and (d) for the functions in Eqs. (A.1), (A.2), (A.3) and (A.4), respectively. The symbols of triangle, bullet,
circle, diamond indicate the data of T ∗ = 900, 1100, 1300K for ∆Kint

sa = 0 and those of cross and plus for T ∗

= 1300K and ∆Kint
sa /A = 0.09mJ/m2, where A is the interface area. The empty square symbols specify the

experimental data extracted from Ref. [10]. The experimental magnetization [M(300K)=1.83T] extracted
from Ref. [11].

increasing tendency of total MAE as the temperature increases. These features are not favorable,
compared with the experimental tendency. When we choose the second M(T ) function presented
at Eq. (A.2), the total MAE at low temperature is largely underestimated and increases linearly as
the temperature increases. The total MAE from the third M(T ) function gives a reasonable com-
parison with the experimental data. However, this choice of function and set of parameters tends
to show a different trend at the flat part around 200K and 300K of experimental data. The choice
of the fourth M(T ) function gives an overestimation at low temperatures, compared with the ex-
perimental data and also gives a linear decreasing tendency as the temperature increases. At high
temperatures it provides a lower total MAE, compared to other three functions. This M(T ) func-
tion cannot also reproduce the behavior around 200K and 300K in the experimental data. From
the simulation presented in Fig. 5, the first M(T ) function (A.1) with T ∗ of 1300K may provide
an acceptable result reproducing the experimental data.

Next, another experimental magnetization is considered. The total magnetization of M(300K)=

2.09T is extracted from Koo et al. [12]. The results of simulation are presented in Fig. 6, as for
the magnetization of 1.83T. This total magnetization largely underestimates all of our data in the
total MAE. The best result is provided by the first M(T ) function with T ∗=1400K. This result
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Figure 6: Same quantities (K per unit area) as in Fig. 5 with the different parameters. The symbols of
triangle, bullet, circle, diamond indicate the data of T ∗ = 900, 1100, 1400K for ∆Kint

sa = 0 and those cross
and plus for T ∗ = 1400K and ∆Kint

sa /A = 0.35mJ/m2. The experimental magnetization [M(300K)=2.09T]
extracted from Ref. [12].

may reproduce the behavior around 200K and 300K in the experimental data when we choose
∆Kint

sa /A = 0.35mJ/m2 as the interface anisotropy. In the simulations of Fig. 5 and Fig. 6, we
introduced ∆Kint

sa /A = 0.09mJ/m2 and ∆Kint
sa /A = 0.35mJ/m2, respectively. Although the fabri-

cated systems are different between Nozaki et al. [11] and Koo et al. [12], those magnetic slabs
are similar to each other. The difference in ∆Kint

sa /A should be explained with a reasonable origin
in future.
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B Appendix: Magnetic moments of density functional approach

The magnetic moments obtained by the density functional approach are displayed for typical tem-
peratures of 53K (sparse mesh) and 316K (sparse mesh) in Table 1 and Table 2. These data were
estimated from the spin density by integrating it in the atomic sphere with the radius (Fe: 1.32Å,
Cr: 0.90Å).

Table 1: Spin magnetic moments in µB on Cr and Fe atoms. The temperature specifies the value used in the
Fermi level smearing. [001](z-direction) and [100](x-direction) specify the direction of total magnetization.

Temperature Total Fe(1) Fe(2) Fe(3) Fe(4) Fe(5)
53K [001] 12.7964 2.8481 2.5311 2.5984 2.4986 2.3202
53K [100] 12.7964 2.8499 2.5295 2.5975 2.4992 2.3203

316K [001] 12.7844 2.8420 2.5286 2.5960 2.5008 2.3170
316K [100] 12.7848 2.8428 2.5286 2.5957 2.5007 2.3170

Temperature Cr(1) Cr(2) Cr(3) Cr(4) Cr(5) Cr(6)
53K [001] -1.0678 0.9999 -1.0902 1.2247 -1.4434 2.3329
53K [100] -1.0674 0.9999 -1.0903 1.2245 -1.4433 2.3330

316K [001] -1.0689 0.999 -1.0905 1.2209 -1.4421 2.3309
316K [100] -1.0689 0.9989 -1.0906 1.2208 -1.4421 2.3308

Table 2: Orbital magnetic moments in µB on Cr and Fe atoms. The temperature specifies the value used in
the Fermi level smearing.

Temperature Total Fe(1) Fe(2) Fe(3) Fe(4) Fe(5)
53K [001] 0.29061 0.08476 0.05967 0.05076 0.05301 0.04241
53K [100] 0.25549 0.06251 0.04822 0.04944 0.05068 0.04464
316K [001] 0.2855 0.0833 0.0574 0.0498 0.0524 0.0427
316K [100] 0.2572 0.0649 0.0478 0.0492 0.0505 0.0448

Temperature Cr(1) Cr(2) Cr(3) Cr(4) Cr(5) Cr(6)
53K [001] 0.00996 -0.00612 0.00935 -0.00746 0.0105 -0.01491
53K [100] 0.01182 -0.00607 0.00888 -0.00911 0.00931 -0.02182
316K [001] 0.0098 0.0062 0.0094 0.0075 0.0105 0.0150
316K [100] 0.0121 0.0062 0.0091 0.0090 0.0093 0.0211
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C Appendix: MAE from Bruno’s relation

One can estimate MAEs from the orbital magnetic moments by using Bruno’s formula [41]

MAE = ξ
m[001]

o −m[100]
o

4µB
, (C.1)

where ξ is the spin-orbit coupling constant (Fe: 51 meV/atom) and m[001]
o (m[100]

o ) is the orbital
magnetic moment for the [001] ([100]) magnetization direction. The MAE was estimated for
each atom and displayed with the total for the typical temperature in Table 3. The totals are
underestimated compared with the respective values indicated in Fig. 1(b) in the main text. These
underestimation may be attributed to the details of 3d-orbital hybridization on Fe atom around the
Fermi level. Interestingly, the difference between 53K and 316K on the total MAE is very similar
to the corresponding value indicated in Fig. 1(b) in the main text.

Table 3: Magnetic anisotropy energy (mJ/m2) of Bruno’s formula estimated from the orbital moments
shown in Table. 2.

Temperature Total Fe(1) Fe(2) Fe(3) Fe(4) Fe(5)
MAE(53K) 0.87 0.55 0.28 0.03 0.06 -0.06
MAE(316K) 0.70 0.45 0.24 0.01 0.05 -0.05

difference 0.17 0.10 0.04 0.02 0.01 -0.01
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Magnetismus von Festköpern und Grenzächen 24 (P. H. Dedrichs, P.Grünberg and W. Zinn, Jülich). (1993)
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