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Hyperbolic mean curvature flow with an obstacle
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Abstract We treat an interface motion with an obstacle according to the hyperbolic mean
curvature flow. In order to realize this motion, we follow the approximation method that is
the so-called Hyperbolic MBO (HMBO) algorithm. In this work, we modify the scheme to
treat the obstacle problem. Then, we investigate the behaviour when the interface touches
the obstacle. We consider two cases of the interface motion. In the first case, the interface
stops moving and lies on the obstacle after touching it. For the second case, the interface
reflects after touching the obstacle. We also plot the points when the interface contacts with
the obstacle and call it the free boundary shape.
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1 Introduction

In this paper, we consider an interfacial motion problem called the hyperbolic mean curvature flow
[3]. We suppose that the interfaces are given by a parametrized family of curves γ : I× [0,T )→R2,
where I = [a,b] and T > 0. Let us consider the region P⊂R2 such that the boundary of P coincides
with the interface. Also, the interface is considered as an oriented curve, such that the region P is
on the left side of the curve. Then, the problem of the hyperbolic mean curvature flow is to find
γ(s, t) satisfying 

∂ 2γ

∂ t2 (s, t) =−κ(s, t)n(s, t),

γ(s,0) = γ0(s),

∂γ

∂ t
(s,0) = v0(s)n0(s),

(1.1)

with s ∈ I and t ∈ [0,T ). Here, κ(s, t) is the curvature, n(s, t) is the unit outer normal vector to the
curve γ at a point (s, t) and the unit outer normal vector at t = 0 is denoted by n0(s). This geometric
evolution says that the normal acceleration of the interface is proportional to its curvature [4] and
given by

a =−κ. (1.2)
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In order to realize the interface motion according to (1.1), we follow the approximation method
introduced by Ginder and Svadlenka [2, 3] that is the so-called Hyperbolic MBO (HMBO) algo-
rithm. In those papers, the authors construct the numerical scheme related to the MBO algorithm.
The MBO algorithm was developed by Merriman, Bence, and Osher [1]. This algorithm applies a
level set approach for realizing the interfacial motion according to the mean curvature flow. Fur-
thermore, [2, 3] develop a modified scheme that can apply to the hyperbolic mean curvature flow
and call it the HMBO algorithm. Also, [3] explains the numerical analysis of this algorithm and
presents the computational results, including multiphase and volume-preserving motions.

In this work, we are interested in the obstacle problem when the interface touches the obstacle.
We use the level set method, so that the interface and the obstacle are expressed as a zero level set
of an auxiliary function [4]. The interface model with an obstacle is given in Section 2. The aims
of this paper are to modify the scheme for the obstacle problem using the HMBO algorithm and
investigate the behaviour of the interface when it touches the obstacle.

We consider two cases of the interface motion based on the choice of the initial curve. In the
first case, we consider a closed curve as the initial curve and a circle as the obstacle located inside
the curve. The curve stops moving and lies on the obstacle after touching it. In this case, we
compare the result of the HMBO algorithm with the solution of a differential equation describing
circle motion by (1.1) before touching the obstacle. We do this comparison for several mesh sizes
and obtain the convergence order of the HMBO algorithm for the case of a circle evolving by the
hyperbolic mean curvature flow.

For the second case, the initial curve is attached to the boundary of the domain and the obstacle
is below the curve. The curve reflects after touching the obstacle. We make a comparison between
the result of the HMBO algorithm for the obstacle problem and the solution of the hyperbolic
obstacle problem based on [7]. At every time we plot the points where the curve contacts the
obstacle, we call it the free boundary shape. Then, we find the slope of the free boundary shape
and present this result for both schemes.

The paper is organized as follows. Section 2 is about the interface model with an obstacle.
The numerical method to simulate this interface motion is given in Section 3. In this section, we
explain the level set method and the HMBO algorithm. Also, we give the scheme to treat the
obstacle problem using the HMBO algorithm. Then, we apply the numerical method and present
the numerical results in Section 4. Finally, the results are summarized in Section 5.

2 Interface model with an obstacle

In this paper, we treat the interface motion with an obstacle. We assume that the obstacle O⊂ R2

is a convex open set. As we mentioned before, the interface is expressed by a parametrized curve
γ(s, t). Here, we suppose that γ is a Lipschitz function and γ ∈C2({γ ∈ Ōc}). According to (1.1),
we formally solve the following obstacle problem

∂ 2γ

∂ t2 =−κn if γ ∈ Ōc,

∂γ

∂ t
·ν∂O ≤ 0 if γ ∈ Ō,

γ ∈ Oc,

γ(s,0) = γ0(s),

∂γ

∂ t
(s,0) = v0(s)n0(s),

(2.1)
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where ν∂O is the unit outer normal vector to the obstacle. To simulate the interface motion with an
obstacle, we apply the HMBO algorithm using the level set method. We will explain this numerical
method in the next section.

3 Numerical method

3.1 The level set method

In this paper, we use the level set method to represent the interface motion (1.1). By this method,
we consider the interface described by the zero level set of a function ϕ : R2× [0,T )→R. Let the
interface at a time t ∈ [0,T ) be given by

Γt = {x ∈ R2 |ϕ(x, t) = 0}.

By the level set method, we can derive the equation for time evolution of Γt as the zero level set
of ϕ(x, t). Then, we can express equation (1.2) by the level set representation in terms of ϕ(x, t).
The motion in normal direction by the normal acceleration is

a =
d
dt
(v), (3.1)

where v is the normal velocity. The level set representation of the normal velocity is

ϕt + v|∇ϕ|= 0.

So, the normal acceleration (3.1) is

a =− d
dt

(
ϕt

|∇ϕ|

)
=−ϕtt |∇ϕ|−ϕt |∇ϕ|t

|∇ϕ|2
.

Further, the level set formulation for curvature is

κ = div
(

∇ϕ

|∇ϕ|

)
.

According to equation (1.2), we get

ϕtt |∇ϕ|−ϕt |∇ϕ|t
|∇ϕ|2

= div
(

∇ϕ

|∇ϕ|

)
. (3.2)

In this case, we take the level set function to be the signed distance to the Γt . We define the
signed distance function from a point x to Γt as

d(x, t) =

{
infy∈Γt‖x− y‖ if x ∈ Et ,

−infy∈Γt‖x− y‖ otherwise,
(3.3)

with Et = {x ∈R2|ϕ(x, t)> 0} and Γt = ∂Et . Since the signed distance function has |∇d|= 1, we
solve (3.2) approximated by [3]

ϕtt = ∆ϕ.

Therefore, we consider that tk = kτ is k-th time step and τ = T
M , M is a positive integer. Let

dk(x) denote the signed distance to the interface at time t = tk. According to the HMBO algorithm
[2, 3], the implementation of this interfacial motion is to solve the initial problem

ϕtt(x, t) = ∆ϕ(x, t) in R2× (0,τ),

ϕ(x,0) = dk(x) in R2,

ϕt(x,0) = v0(x) in R2

(3.4)
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for k = 0, . . . ,M−1 with M being the number of time steps. But, we solve equation (3.4) only for
the first step, k = 0. For the further steps, k = 1, . . . ,M−1, we modify this initial problem. If we
solve it for all steps, we need to know the velocities along the interface. This can complicate the
numerical solution [3]. Therefore, this difficulty is overcome by using the solution to the following
problem 

ϕtt(x, t) = 2∆ϕ(x, t) in R2× (0,τ),

ϕ(x,0) = 2dk(x)−dk−1(x) in R2,

ϕt(x,0) = 0 in R2.

(3.5)

We explain the intuitive idea of this modification. Let us have a very small time step size and
assume that the interface moves smoothly. Therefore, the interface does not change much, so that
κ is approximately constant. Then we can rewrite equation (3.4) depending on time only. Let the
initial value be denoted by ϕ0 and let the initial velocity be v0. The equation becomes

ϕtt(t) =−κ in (0,τ),

ϕ(0) = ϕ0,

ϕt(0) = v0.

(3.6)

The solution of equation (3.6) is

ϕ(t) = ϕ0 + v0t− 1
2

κt2. (3.7)

We denote ϕ(−t) as ϕ−1 and we get

ϕ−1 = ϕ0− v0t− 1
2

κt2.

Then
v0 =

ϕ0−ϕ−1

t
− 1

2
κt.

Substituting the approximation of v0 above into (3.7) yields

ϕ(t) = 2ϕ0−ϕ−1−κt2. (3.8)

Now, the solution (3.8) does not contain the term v0. We see that function ϕ(t) in (3.8) is the
solution of the modified equation

ϕtt(t) =−2κ in (0,τ),

ϕ(0) = 2ϕ0−ϕ−1,

ϕt(0) = 0.

From this intuitive idea, we deduce the modified equation (3.5) for the further steps with zero
initial velocity by making the following modifications:

1. Use constant
√

2 as the wave speed.

2. Combine the initial values from both previous and current time steps, that is 2dk(x)−dk−1(x).

The detailed explanation of the analysis of this method is given in [3]. Following this idea, we will
describe the HMBO algorithm adopted from [3] in the next section.
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3.2 The HMBO algorithm

3.2.1 The original HMBO algorithm

The HMBO algorithm is a numerical approximation for the interface motion (1.1) [3]. It means
that we find Γt = {γ(s, t)|s ∈ I} satisfying (1.1). In this case, we consider that the interface will
evolve up to a time T . We take the time step ∆t = T

M , where M is a positive integer and 0 < ∆t� 1.
Then, the approximation method is as follows:

1. For k = 0, we assume that the initial curve is Γ0. Then, construct the signed distance function
to Γ0 as defined in (3.3) and denote it by d0(x). We find u : Ω× (0,∆t)→ R,Ω ⊂ R2,

satisfying 
utt(x, t) = ∆u(x, t) in Ω× (0,∆t),

u(x, t) = d0(x) on ∂Ω× (0,∆t),

u(x,0) = d0(x) in Ω,

ut(x,0) = 0 in Ω.

(3.9)

For simplicity, we restrict the initial velocity ut(x,0) = 0. Then, we define the zero level set
of u(x,∆t) as Γ1 and compute the signed distance function to Γ1.

2. For k = 1,2, . . . ,M−1, repeat the following steps

(a) Solve the equation
utt(x, t) = 2∆u(x, t) in Ω× (0,∆t),

u(x, t) = dk(x) on ∂Ω× (0,∆t),

u(x,0) = 2dk(x)−dk−1(x) in Ω,

ut(x,0) = 0 in Ω.

(3.10)

(b) Update the surrounded region and the interface using the zero level set of the solution
to (3.10):

Ek+1 = {x ∈Ω |u(x,∆t)> 0},
Γk+1 = ∂Ek+1.

(c) Compute the signed distance function to Γk+1.

We apply the finite difference approximation to solve the wave equation in the HMBO al-
gorithm. Hence, utt and ∆u are approximated by the central difference. Here, the domain Ω

is a subset of R2, Ω = (a,b)× (a,b). Each (a,b) is divided into N equal intervals, that is
h = ∆x = ∆y = b−a

N . So, we have xi = a + ih,y j = a + jh for i, j = 0, . . . ,N. Also, the time
interval (0,∆t) is divided into m equal intervals, that is ∆τ = ∆t

m and τl = l∆τ, l = 0, . . . ,m. In
this algorithm, we use Dirichlet boundary condition. If the interface touches the boundary of the
domain, then the interface rests at the boundary [6].

3.2.2 The modification of the HMBO algorithm for the obstacle problem

Since the HMBO algorithm requires us to solve the wave equation, we need to modify the wave
equation to treat the obstacle problem. Then, we follow the idea from the hyperbolic obstacle
problem [7].
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(1) The hyperbolic obstacle problem

In [7], the author describes the hyperbolic obstacle problem as the string vibration with an
obstacle. In this phenomenon, we can consider two conditions for the string vibration near the
obstacle. First, when the string goes up from the obstacle, the energy conservation law holds.
Second, if the string goes down, the energy is not preserved. Also, we assume that the reflection
constant is zero when the string hits the obstacle. It means that the string stops if it collides
with the obstacle. Here, the shape of the string is described by the graph of a scalar function
v : Ω̂× [0,T )≡ Ω̂T →R, where Ω̂⊂Rn and the obstacle is the graph of a fixed function ψ : Ω̂→R.
In [7], the author considered that ψ is the zero function. Then, we derive the equation when the
energy conservation law holds. We suppose that the tension energy of the string is

∫
Ω̂
|∇v|2dx and

the kinetic energy is
∫

Ω̂
v2

t χ{v>ψ}dx.
Therefore, the stationary points of the following action functional describe the motion of the

string:

J(v) =
∫ T

0

∫
Ω̂

((vt)
2−|∇v|2)χ{v>ψ} dxdt,

where χ{v>ψ} is the characteristic function of the set {(x, t) ∈ Ω̂T |v(x, t) > ψ(x)}. We calculate
the first variation d

dε
J(v+ εφ)|ε=0 = 0, with φ ∈ C∞

0 (Ω̂T ∩ {v > ψ}). Then, we get the weak
formulation for the wave-type equation

vtt = ∆v in Ω̂T ∩{v > ψ}. (3.11)

From the inner variation d
dε

J(v◦ τ−1
ε )|ε=0 = 0, where τε = Id+ εη and η ∈C∞

0 (Ω̂T ;Rn×R), we
obtain the free boundary condition ([7])

|∇v|2− (vt)
2 = 0 on Ω̂T ∩∂{v > ψ}. (3.12)

From (3.11) and (3.12), we can derive the equation [5]

χ{v>ψ}vtt = ∆v in Ω̂T .

Hence, we introduce the problem as
χ{v>ψ}vtt = ∆v in Ω̂T ,

v(x,0) = f0(x) on Ω̂,

vt(x,0) = g0(x) on Ω̂,

v(x, t) = p(x, t) on ∂ Ω̂T , with p(x,0) = f0(x) on ∂ Ω̂,

(3.13)

where the first equation is understood in the sense of distributions. When the string touches the
obstacle, the solution v also satisfies{

v≥ ψ, ∆v≥ vtt in Ω̂T ,

∆v = vtt on Ω̂T ∩{v > ψ}

in the sense of distributions.
We solve (3.13) using a finite difference approximation. Consider Ω̂ = (a,b)⊂R to be divided

into N equal intervals, so we have h = b−a
N and xi = a+ ih, i = 0, . . . ,N. For tk = k∆t,k = 0, . . . ,M,

we approximate vtt and ∆v by central difference. Also, the characteristic function is defined ([5])
by

χ{v>ψ}(xi, tk) =

{
1 if vk

i−1 > ψi−1 or vk
i > ψi or vk

i+1 > ψi+1,

0 otherwise,
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where vk
i = v(xi, tk) and ψi = ψ(xi). Hence, we get the scheme{

vk+1
i = 2vk

i − vk−1
i + ∆t2

h2 (vk
i+1 + vk

i−1−2vk
i ) if χ{v>ψ}(xi, tk) = 1,

vk+1
i = ψi if χ{v>ψ}(xi, tk) = 0

(3.14)

for k = 0, . . . ,M−1 and i = 1, . . . ,N−1.

(2) The HMBO algorithm for the obstacle problem

In the HMBO algorithm, the interface is expressed as the zero level set of a function u : Ω×
(0,∆t)→ R. Similarly, the obstacle is also represented by the zero level set of a fixed function.
We define w : Ω→ R such that {x ∈ Ω |w(x) = 0} is the obstacle. Let µ : Ω→ R be the signed
distance function to the obstacle. To treat the obstacle problem, we follow the discretization of the
hyperbolic obstacle problem given in scheme (3.14) for solving equations (3.9) and (3.10). Let
ul

i, j = u(xi,y j,τl) and µi, j = µ(xi,y j). Then, we have the following scheme
ul+1

i, j = 2ul
i, j−ul−1

i, j

+c2 ∆τ2

h2 (ul
i+1, j +ul

i−1, j +ul
i, j+1 +ul

i, j−1−4ul
i, j) if χ{u>µ}(xi,y j,τl) = 1,

ul+1
i, j = µi, j if χ{u>µ}(xi,y j,τl) = 0,

(3.15)

for l = 0, . . . ,m−1 and i, j = 1, . . . ,N−1. The constant c2 = 1 for equation (3.9) and c2 = 2 for
equation (3.10). Here, we define

χ{u>µ}(xi,y j,τl) =

{
1 if ul

i, j > µi, j,

0 otherwise.
(3.16)

By implementing this scheme, we obtain

u(x, t)≥ µ(x) for (x, t) ∈Ω× (0,T ).

However, scheme (3.15) is still developed. We will investigate the results using this scheme.

Remark. If we follow the characteristic function for the hyperbolic obstacle problem, then the
characteristic function for the HMBO algorithm should be

χ{u>µ}(xi,y j,τl) =

{
1 if ul

i±1, j > µi±1, j or ul
i, j > µi, j or ul

i, j±1 > µi, j±1,

0 otherwise.
(3.17)

However, using (3.17), the interface motion bounces after touching the obstacle. This behaviour
does not agree with the expected motion. The expected motion based on problem (2.1) is that the
interface can rest on the obstacle after touching it. Hence, to match the expected motion, we use
the characteristic function (3.16). We will present these results in the next section.

4 Numerical results

In this part, we consider two cases of the interface motion. Both cases are based on the choice of
the initial curve. In the first case, we consider a closed curve as the initial curve and the obstacle
is a circle located inside the curve. Applying the HMBO algorithm for the obstacle problem, the
curve stops moving and lies on the obstacle after touching it. For the second case, the initial curve
is attached to the boundary of the domain. Also, we position the obstacle so that it is below the
curve. In this case, the curve reflects after touching the obstacle.
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4.1 First case

For the numerical test, we consider a circle evolving by (1.1) with initial radius r0 and initial
velocity v0. We give a fixed circle with a smaller radius as an obstacle. The circle will shrink
before touching the obstacle and stop after touching it. Before touching the obstacle, the curve is
the circle with radius r(t) satisfying 

r′′(t) =− 1
r(t)

,

r(0) = r0,

r′(0) = v0.

(4.1)

Consider a circle with initial radius r0 = 0.35, centered at (x,y) = (0.5,0.5) on a domain
(0,1)× (0,1), and zero initial velocity. A circle with radius r = 0.1 at the center of the initial
circle is given as the obstacle. We use mesh size h = 1

N where N is grid resolution, time step
∆t = te

29 with te being the extinction time given by te = 0.35
√

π

2 [3]. Then, this gives the time
discretization for finite difference approximation to the wave equation ∆τ = ∆t

26 . In this part, we
take the condition that is close to the case of a circle evolving by the hyperbolic mean curvature
flow in [3], so we can compare both results.

The error of the radius of the circle before touching the obstacle is obtained by the comparison
between the result from the HMBO algorithm and the solution of (4.1) using Runge Kutta fourth
order method. The L2 error is

e =

√√√√
∆t

29

∑
k=1

(rk
r − rk

n)
2,

where rn is the maximum distance to the center from the HMBO algorithm result and rr is the so-
lution to (4.1). Furthermore, we show the convergence order related to L2 error. The convergence
order is computed by

logeh2− logeh1

logh2− logh1
,

where h2 > h1 are two different mesh sizes. The error and the convergence order are shown in the
table below.

Table 1: Error and convergence order using the HMBO algorithm

N e convergence order

16 0.107927 -
32 0.0966846 0.159
64 0.0813308 0.249

128 0.0573378 0.504
256 0.0324356 0.822
512 0.0181595 0.837

From Table 1, as the mesh size decreases, the error value also decreases. Moreover, the L2 error
and its convergence order agree with the result of the circle case given in [3].

We also tried other conditions when the obstacle position is not at the center of the initial
curve. From the results of this trial, the interfaces shrink and stop moving after touching the
obstacle. Then, the interfaces lie on the obstacle and follow the shape of obstacle. The numerical
results of the interface motion with an obstacle for several times are shown in the figures below.
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(a) (b)

(c) (d)

Figure 1: The interface motion with an obstacle

4.2 Second case

In this case, we consider the curve having small displacement, such that the interface motion by
the hyperbolic mean curvature flow coincides with the wave equation. Therefore, we compare the
results of the HMBO algorithm for the obstacle problem and the hyperbolic obstacle problem using
scheme (3.14). For the HMBO algorithm, we consider Ω = (−1,1)× (0,2), the mesh size h =
2
N ,N = 128,256,512,1024, the time step ∆t = 0.001, and time discretization for finite difference
approximation ∆τ = ∆t

m ,m = 10. Then, for scheme (3.14), we use Ω̂ = (−1,1), the mesh size
h = 2

N ,N = 128,256,512,1024, and the time step ∆t = 0.001.
In this trial, the initial curves are given by a piece-wise linear function or a quadratic function

with small displacement. Also, we set the position of an obstacle below the curve such that it is
not too close to the curve but the curve motion can touch it. Here, we use more general function
for the obstacle besides the zero function as in [7], namely constant function, linear function, and
quadratic function. Then, we will describe the numerical results for each obstacle function.
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4.2.1 Constant function

In this part, the obstacle is given by a constant function. The initial conditions and the obstacle
for both schemes are described below. Here, u(x,y,0) and w(x,y) are the initial value and the
obstacle function for the HMBO algorithm, respectively. For scheme (3.14), the initial conditions
are v(x,0) and vt(x,0) with the boundary conditions being v(−1, t)≡ v(−1,0) and v(1, t)≡ v(1,0).
Also, ψ(x) represents the obstacle function. More precisely, we have

• Case 1 (Initial curve is a piecewise linear function)
u(x,y,0) =−0.05|x|− y+1.05

on Ω,
w(x,y) = 0.975− y
v(x,0) =−0.05|x|+1.05,vt(x,0) = 0

on Ω̂.
ψ(x) = 0.975

• Case 2 (Initial curve is a quadratic function)
u(x,y,0) =−0.05x2− y+1.05

on Ω,
w(x,y) = 0.975− y
v(x,0) =−0.05x2 +1.05,vt(x,0) = 0

on Ω̂.
ψ(x) = 0.975

The figures below show the curve motions with an obstacle using the HMBO algorithm and

t = 0 t = 1.5

t = 1.92 t = 2.88

Figure 2: Curve motion with a constant obstacle for Case 1
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scheme (3.14). For instance, we plot each case with the mesh size N = 1024. Since the curve
has small displacement, we use different scales for y−axis and x−axis to make the figure of the
curve motion clearer. In these figures, the curve motion using the HMBO algorithm is indicated
by curve HBMO and curve wave is for the hyperbolic obstacle problem using scheme (3.14).

From Figure 2 and Figure 3, the curve reflects after touching the obstacle and vibrates above
the obstacle. We plot the points when the curve contacts with the obstacle at every time step. To
get the contact points with the obstacle, we find the end points in both sides when the curve is
close enough to the obstacle. We find the left contact point xL as

xL = min
j∈N
{x j | | f (x j)−g(x j)|< ε} (4.2)

and the right contact point xR as

xR = max
j∈N
{x j | | f (x j)−g(x j)|< ε}, (4.3)

where 0 < ε � 1. Then, f (x j) and g(x j) are the values of functions describing the curve and the
obstacle, respectively, for every grid point at a certain time.

t = 0 t = 1.47

t = 2.04 t = 2.91

Figure 3: Curve motion with a constant obstacle for Case 2
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For the HMBO algorithm, f (x) and g(x) are the functions whose graphs represent the zero level
set of u(x,y) and w(x,y), respectively. Meanwhile, for scheme (3.14), f (x) represents the function
v(x) and g(x) is the obstacle function ψ(x). For the range that determines where the curve touches
the obstacle, that is {x | | f (x)− g(x)| < ε}, we take ε = 0.001 for both schemes. Furthermore,
we plot the contact points, xL and xR, at every time step for each mesh size using both schemes.
These graphs are called the free boundary shape [7] and are shown in the figures below. In these
figures, the free boundary shape from the curve motion using the HMBO algorithm is formed by
x R HBMO and x L HBMO. Further, x R wave and x L wave denote the free boundary shape for
the hyperbolic obstacle problem.

N = 128 N = 256

N = 512 N = 1024

Figure 4: The free boundary shape for Case 1
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N = 128 N = 256

N = 512 N = 1024

Figure 5: The free boundary shape for Case 2

Moreover, we find the slope of the free boundary shape when the curve is going up for both
sides. This slope represents the free boundary condition (3.12). According to this free boundary
condition, we expect that the slope of the free boundary shape should be ±1. The slopes of the
free boundary shape using both schemes for each mesh size are given in the following tables. By
the curve motion, we consider that t∗ denotes the time when the curve starts going up.

Table 2: The slope of the free boundary shape for Case 1

N
Slope

HMBO algorithm scheme (3.14)
right and left sides t∗ right and left sides t∗

128 ± 0.76 1.119 ± 1.01 1.556
256 ± 0.91 1.338 ± 1.01 1.521
512 ± 0.93 1.425 ± 1 1.518
1024 ± 0.99 1.454 ± 1.01 1.493
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Table 3: The slope of the free boundary shape for Case 2

N
Slope

HMBO algorithm scheme (3.14)
right and left sides t∗ right and left sides t∗

128 ± 0.75 1.167 ± 1 1.628
256 ± 0.9 1.392 ± 0.99 1.628
512 ± 0.93 1.478 ± 0.99 1.61
1024 ± 0.95 1.509 ± 0.99 1.606

4.2.2 Linear function

We simulate the curve motion with the obstacle given by a linear function using the HMBO algo-
rithm and scheme (3.14). Here, we use the same domain and discretization in space and time as in
the previous part. Also, the initial and boundary conditions are the same as before. We take

• Case 3 (Initial curve is a piecewise linear function)
u(x,y,0) =−0.05|x|− y+1.05

on Ω,
w(x,y) = 0.015x− y+0.975
v(x,0) =−0.05|x|+1.05,vt(x,0) = 0

on Ω̂.
ψ(x,y) = 0.015x+0.975

• Case 4 (Initial curve is a quadratic function)
u(x,y,0) =−0.05x2− y+1.05

on Ω,
w(x,y) = 0.015x− y+0.975
v(x,0) =−0.05x2 +1.05,vt(x,0) = 0

on Ω̂.
ψ(x,y) = 0.015x+0.975

The figures below show the curve motions for each case using both schemes with N = 1024.

t = 0 t = 1.53

Figure 6: Curve motion with a linear obstacle for Case 3 (t = 0,1.53)
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t = 1.89 t = 2.85

Figure 7: Curve motion with a linear obstacle for Case 3 (t = 1.89,2.85)

t = 0 t = 1.41

t = 1.95 t = 2.88

Figure 8: Curve motion with a linear obstacle for Case 4
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Also, we plot the free boundary shape using both schemes for each case. Hence, the free
boundary shapes for each mesh size are shown in the figures below.

N = 128 N = 256

N = 512 N = 1024

Figure 9: The free boundary shape for Case 3

N = 128 N = 256

Figure 10: The free boundary shape for Case 4 (N = 128,256)
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N = 512 N = 1024

Figure 11: The free boundary shape for Case 4 (N = 512,1024)

Moreover, we find the slope of the free boundary shape when the curve is going up. In order to
obtain the left contact point, xL, and the right contact point, xR, with the obstacle, we use equations
(4.2) and (4.3). The tables below represent the slopes of the free boundary shape for both schemes.

Table 4: The slope of the free boundary shape for Case 3

N
Slope

HMBO algorithm scheme (3.14)
right side left side t∗ right side left side t∗

128 -0.66 0.8 1.187 -1 1 1.652
256 -0.85 0.91 1.427 -1.01 1 1.65
512 -0.92 0.93 1.524 -0.99 1 1.621
1024 -0.94 0.94 1.557 -1 1 1.619

Table 5: The slope of the free boundary shape for Case 4

N
Slope

HMBO algorithm scheme (3.14)
right side left side t∗ right side left side t∗

128 -0.62 0.66 1.223 -0.99 0.99 1.616
256 -0.82 0.87 1.385 -0.99 0.99 1.604
512 -0.91 0.93 1.473 -0.99 0.99 1.598
1024 -0.93 0.94 1.501 -0.99 0.99 1.594



18 Hyperbolic mean curvature flow with an obstacle

4.2.3 Quadratic function

Next, we use a quadratic function as the obstacle that is given below

• Case 5 (Initial curve is a piecewise linear function)
u(x,y,0) =−0.05|x|− y+1.05

on Ω,
w(x,y) =−0.015x2− y+0.975
v(x,0) =−0.05|x|+1.05,vt(x,0) = 0

on Ω̂.
ψ(x,y) =−0.015x2 +0.975

• Case 6 (Initial curve is a quadratic function)
u(x,y,0) =−0.05x2− y+1.05

on Ω,
w(x,y) =−0.015x2− y+0.975
v(x,0) =−0.05x2 +1.05,vt(x,0) = 0

on Ω̂.
ψ(x,y) =−0.015x2 +0.975

The figures below show the curve motions for each case using both schemes with N = 1024.

t = 0 t = 1.5

t = 1.89 t = 2.88

Figure 12: Curve motion with a quadratic obstacle for Case 5
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t = 0 t = 1.44

t = 2.1 t = 2.94

Figure 13: Curve motion with a quadratic obstacle for Case 6

Also, the free boundary shapes for each mesh size are shown in the figures below.

N = 128 N = 256

Figure 14: The free boundary shape for Case 5 (N = 128,256)
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N = 512 N = 1024

Figure 15: The free boundary shape for Case 5 (N = 512,1024)

N = 128 N = 256

N = 512 N = 1024

Figure 16: The free boundary shape for Case 6
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Moreover, we find the slopes of free boundary shape when the curve is going up and they are given
in the tables below.

Table 6: The slope of the free boundary shape for Case 5

N
Slope

HMBO algorithm scheme (3.14)
right and left sides t∗ right and left sides t∗

128 ± 0.84 1.149 ± 1.04 1.611
256 ± 0.96 1.378 ± 1.02 1.579
512 ± 0.98 1.475 ± 1.02 1.579
1024 ± 1 1.504 ± 1.03 1.565

Table 7: The slope of the free boundary shape for Case 6

N
Slope

HMBO algorithm scheme (3.14)
right and left sides t∗ right and left sides t∗

128 ± 1.07 1.14 ± 1.26 1.59
256 ± 1.22 1.341 ± 1.27 1.578
512 ± 1.22 1.445 ± 1.28 1.572
1024 ± 1.22 1.473 ± 1.28 1.568

From Case 1 - Case 6, the slopes of free boundary shape obtained by using the HMBO algorithm
and scheme (3.14) coincide as the mesh size becomes smaller. It means that the curve motion
using both schemes gives similar results. Also, the slope of free boundary shape approaches the
free boundary condition.

5 Conclusion

We considered the interface motion with an obstacle according to the hyperbolic mean curvature
flow. In this work, we formally solved the obstacle problem given in equation (2.1). In order
to realize this motion, we used the HMBO algorithm as an approximation method. Then, we
modified the HMBO algorithm to treat the obstacle problem. The HMBO algorithm requires us
to solve the wave equation. Therefore, we modified the wave equation based on the hyperbolic
obstacle problem and we got scheme (3.15).

Moreover, we investigated the behaviour of the interface when it hit the obstacle. We consid-
ered two cases of the interface motion based on the choice of the initial curve. In the first case, we
considered that the initial curve was a closed curve and the obstacle was located inside the curve.
In this case, the interface stopped moving and lied on the obstacle after touching it, following the
shape of the obstacle. We compared the result from the HMBO algorithm with the solution of
equation (4.1) describing circle motion by (1.1) before touching the obstacle. The L2 error and its
convergence order agreed with the result of the case of a circle evolving by the hyperbolic mean
curvature flow given in [3].
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For the second case, the initial curve was fixed at the boundary of the domain and the obstacle
was below the curve. After touching the obstacle, the interface reflected and vibrated above the
obstacle. At every time we plotted the points where the interface contacted the obstacle, we called
it the free boundary shape. We compared the results of the HMBO algorithm for the obstacle
problem with the solution of the hyperbolic obstacle problem using scheme (3.14). The slope of
the free boundary shape obtained by using the HMBO algorithm coincided with the one using
scheme (3.14) as the mesh size becomes smaller. This indicated that the curve motion using both
schemes converged to the same result. Also, the slope of the free boundary shape approached the
free boundary condition.
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