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Abstract. In this paper we investigate the asymptotic behavier of the
summatory function D,(z,q,!) and w(z,q,1), and its relation to the
Riemann hypothesis for the Dirichlet L-function.

Introduction

One of the classical problems in analytic number theory which is now
called “the Dirichlet divisor problem” is concerned with investigating
the asymptotic behavier of Dy(z) = ), ., di(n) where di(n) means
the number of ways of expressing n as a product of k natural numbers.
Namely, di(n) is a multiplicative arithmetical function such that

da(p™) = (k—i—m-—l) _ k(k+1)---(k+m—1). |

m m!

It is well-known that Dy (z) has an expression in the form
Dp(2) = 2Pr—1(logz) + Ay(z)

where Pj(z) is some polynomial of degree k, and A(z) is the error
term. It seems that the essence of this problem is to establish some
relationship between the order of Ax(z) and the property of ((s) since

Go=3 % (s,

s
n=1

where s = o + it and ((s) is the Riemann zeta function.
It i1s known that

Ai(e) < gD e (0)

for every positive ¢, and that the statement

Ak(z) & 21/2+¢
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for every k is equivalent to the Lindelof hypothesis. Finally it is con-
Jectuered that

A;,(a:) < z(k-—l)/2k+e’

but any corresponding propertis of {(s) is not revealed yet.
On the other hand some mathematician tried to generalize the divisor
problem. Let d,(n) be a multiplicative function defined by

aom= (")

where z 1s a complex number. Then we have

co=Ta-2 =222 ©>1

P n=1

where (*(s) = exp(zlog ((s)) and let log((s) take real values for real
s > 1.

The generalized divisor problem is to find an asymptotic formula for
Y n<y dz(n), which was observed for real z > 0 by A.Kienast[7] and

K.Iseki[5] independently. A.Selberg[15] considered it for all complex z,
his result being

D.x)= L di(n) = LB 4 0aloga®) (1)

uniformly for |z| < A, where A is any fixed positive number. This was
extended by Rieger [14] to arithmetic progressions such that

| _ 2y — (Pla)y
Dz(”aQil)— ; dz’( )_‘( q ) I‘(z)go(q

n=l (;od q)

)(log z)*~

+O((—+ (q)) ()(l ogz)**"*loglog 4q)

uniformly for |z| < 4, ¢ < (logz)™, (g, l) = 1, where A and 7 are any
fixed positive numbers. We note that when z is a natural number, d,(n)
coincides with the divisor function in the Dirichlet divisor problem, and
d_1(n) with the Mobius function.

Next, let w(2) be the number of integers < z which are product of

k distinct primes. For k = 1, mi(z) reduces to w(z), the number of
primes not exceeding .
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C.F.Gauss stated empirically that =(z) ~ z(loglogz)/logz, and
E.Landau proved that m(z) ~ z(loglog2)*~!/(k — 1)!log = by using
the prime number theorem. Selberg considered D,(z) not only for its
own sake but also with an intension to derive

zQ(loglog ) z(loglog = )*
2
m(2) = log 2 ( kl(log )? ) (2)
uniformly for 1 < k < Aloglogz, where Q(z) is polynomial of degree
k — 1. Now we define m3(#,q,l) as a generalization of x;(z) by

(2, q,l) = Z 1.

n<as
n=l(mod g)
n=py- Py (Pi#Pj)

In this paper we shall consider the connections between the asymp-
totic formulas of D,(z,q,1), wx(2,q,1) and the location of zeros of the
Dirichlet L-function. In particular we shall establish some necessary and
sufficient conditions for the truth of the Riemann hypothesis, so that this
paper gives a generalization of [1] to arithmetic progressions.

The main term of (1)and (2) is, however, inconvenient for our aim so
that we introduce the following integrals as the main terms of D,(z, g, )
and (2, g,l) respectively :

3,(2,q) / (L5, x0))* = ds,

-—-(2—,1)— [ oy

y {H(l n ZX;‘(p))(l . Xl;)(‘p))z}Zkl_H ids dz

Fk,&(“’a‘])

8

where L is, for any » (0 < » < 1/2), the path which begins at 1/2,
moves to 1 — » along the real axis, encircle the point 1 with radius » in
the counterclockwise direction, and returns to 1/2 along the real axis,
and L is, for every 6 and any » (§ > 0, » > 0, § + r < 1/2), the path
which begins at 1/2 + §, moves to 1 — 7 along the real axis, encircle the
point 1 with radius » in the counterclockwise direction, and returns to
1/2+6 along the real axis. Here we denote by y¢ the principal character
mod q.
The error terms are defined by

1
Az zaq’l =D,(z) - —2, z,49),
( ) (2) ) (2,9)
1
Ry, 5(2,q,1) = m(2,q,1) — — Fp, s(, q).

v(g)
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Let

O(x) =sup{o : Lo +it,x) =0}, O,= max O(x)
modq

Then the following Theorem 1 and 2 follow from more general results
proved in sections 1 and 2 below.

THEOREM 1. There exists some constant ¢ such that
A(z,q,1) < ge Ve

uniformly for |z| < A, q < (logz)7, (g,!) = 1 where A and 7 are any
fixed positive numbers.
Further we have

Ay(z,q,1) < %7F°

uniformly for |2| < A, q <z, (g,1)=1.

Conversely if A,(z,q,]) < z=+¢ for any I ((g, ) = 1) and for some
z € C — Q7%, where Q* denotes the set of all non negative rational
numbers, then any L(s,x) (modq) has no zeros for o > E.

The main term ®,(z,q) has an asymptotic expansion

®,(2,q) = z(logz)*~ L Z oz 2) ':l(;(’zq) ) + O(z(logz)RZ‘N‘l)

uniformly for |z| < A. Here N is any fixed positive integer and B,,(z, q)
(0 < m < N —1) are regular functions of z, especially Bg(z,q) =

(pla)/a)-

THEOREM 2. There is some constant ¢ such that
Rk,g(:c, q, l) & ge~cVioge

uniformly for k > 1, ¢ < (log2), (q, 1) = 1.
Further we have
Rk,&(z9 q, l) < zoq-H
uniformly fork > 1, g < =, (q, I)=1.

Conversely if Ry s(z,q,1) < 25%¢ for any I ((g, 1) = 1) and for some
k > 1, then any L(s,x) (modq) has no zeros for ¢ > &
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The main term F), 5(z,q) has an asymptotic expansion

)k—l

N-1
oz Qm,q(loglog z) z(loglog =
Fi,5(2,0) = log = 7;) (log 2)™ o (log =z)N+1 )

for every k and q. Here N is any fixed positive integer and Qo 4(z) are
polynomials of degree not exceeding k — 1, especially the coefficient of
271 of Qo o(2) is 1.

Remark.
1. If we define 75 4 by

Phogl = iI;f inf{r : Ry, s(z,q,]) € 2"}

Theorem 2 shows that max; 74,41 = O, . The statement @, = 1/2 for
every q is equivalent to the truth of the Riemann hypothesis for Dirichlet
L-function.

2. For k = 1, we can express the main term in terms of the logalithmic
integral. Namely,

? du
F — 1/2+6
V(0 = [t 0,

so that

_ 1 ° du —cq/log =
m(e0D) = = [ 2 4 OfeemeVieR),

3. Similar results hold for wi(z,q,!) and Qi(z,q,!). Here

wi(z,q,0) = Z 1, Qu(z,q,]) = Z 1

n<la n<la
n=l(modg) n=l(modq)
w(n)=k Q(n)=k

where w(n) means the number of distinct prime factors of n, and (n)
means the number of total prime factors allowing multiplicity.
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§1. The Generalized Divisor Problem

Actually we prove a more general statement than Theorem 1 and
Theorem 2.

Suppose b,(n) is an arithmetical function with a complex number z
and let

co

=320 (o5

n‘
n=1

be absolutely convergent, and that f(s,0)=1.
We define the multiplicative function a,(n)by

G =3 28 s,

ns
n=1

If we put

Flaz,x) =) b:(n)x(n) (o >1/2)

nl
n=1

where xis a Dirichlet character mod g, then

(Lo, )y F(syzn) = 3 22Xy

nl
n=1

Non negative number 6 represent 0or arbitrary small positive number
according as

lim f(s z) < 00

3—»1

or not.

LeMmma 1.1. We have

A, (z,q,l) = Z a,(n) = o

n=1l(modg)

o |, xS s 0%

+ O(ze—cwllogz)

uniformly for |z| < A, q < (logz)7, (g,1) = 1, where o is the principal
character mod q.

Further, if we put

1 B z*
P, 5(2,q) = 7 ), (L(s, x0)) f(s,z,Xo)Td-‘-‘
§
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then ®, s(z,q) has the following asymptotic expansion

N-1
..o(0,) = allog )™ 3 o m T O(a(log )™ 1)

uniformly for |z| < A. Here N is any fixed positive integer, Bn,(z,q) are
regular functions of z to be defined in the proof, especially Bo(z,q) =

((p(Q)/q)zf(l, Z, XO)‘

Proof. We put A,(z,x) = > ..
exp{+/logz}. Absolute constants C, c, and so on, are not necessary the
same at each occurrence.

First, it should be shown that

a,(n)x(n) and restrict that ¢ <

z+¢
Ay (2, x) =€} / A, (u,x)du+O0(¢log? 2)+O(24+D/(4F1)y  (3)

where { = £(z) satisfies that 1 < & < 2/2.
If we denote D, (z,x) = >, <, d-(n)x(n),

Y a(n)x(n)

- nép b.(n)x(n)D,((z + p)/n,x) — :4:; b.(n)x(n)D.(z/n,x)
=<n§:bz<n)x(n>vz«z +p)fmx) - n;pbz(n)x(n)uz(z/n, )
+ (n; b.(n)x(n)D.(2/n, x) — g ;z(n)x(n)Dz(z/n,x))
S b ) ()
imen et

+ Y b(n)x(n)D.(2/n,x).

e<n<a+tp

for 1 < p < ¢. Here the second term is 0 whereas the first term is

& plog? z 4 2(A+1)/(4+2)

Because that |d,(n)| < dix(n) where k = [|2]|] + 1, and the well known

result (0) make 35, ..., d:(n) < plog*~ 2 + 2*/(+1). Hence we
have N
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Z az(n)x(n) < plogA 2 1 L(A+1)/(A+2)
s<nla+p

On the other hand

£ / A, x)du = A,(2,x) + O(€" / T . (n)x(n)du)

e<n<u

= A,(z,x)+ O( sup | Z a.(n)x(n)|)

0<PS£ z<n§c+p

Hence we obtain (3).

We start from the expression

24T s+1

1 . z
[ Actwide = Jim o [ (0000 100 7

By the Cauchy integral theorem, the path of integration can be de-
formed within the domain where the integrand is single-valued.

For x = o, we replace the path of integration to 23:1 L; which is
defined as follows :

ds.

L, is the segment [2 — T, 1 — n(-T,q) —iT],

L, is the curve s =1 —q(t,q) + it (—T <t < —top)

and two segments ,

[n—ito, n—i(1—n)tand]+[n—i(1—n)tand, 1/2+65—i(1/2—8)tanb)],

Lg is the segment [1/2 + 8§ —i(1/2 — §)tan@, 1+ re~¥(==9)],

Ly is the arc s =1+ 7 (- (1r—0)<go<7r—0)

Ly is the segment [1 4+ 7™ 1/2 4+ 6 + i(l/Z — 6)tané|,

Lg is two segments »

[1/246+i(1/2—8)tan 8, n+i(l—n)tand |+[n+i(1—n)tand, n+itg]

and the curve s =1 —95(¢,q) + it (L <t <T),

Ly is the segment [1 — 9(T,q) + iT, 2 +:T].

Eere 7(t,q) = c/logq(|t| + 2),n = 1 — n(te,q) and tgis suffciently
la.rge number to make 1/2 < < 1. Non negative number and any
positive numbers rand 6 are satisfying 1/2+6 < np <1l -7, 0 <
(1—mn)tané < to.

The contributions from the integral along L + Ly + Lg + L7 are seen
to give the error term, while the integral along Ls + L4 + L5 gives the
principal term since that path becomes L; allowing 6 | 0.
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We can see
log L(s,x0) < loglogg(|¢| + 3)
for s € Ly + Ly + Lg + L7 by Hilfssatz 4 and 7 of Rieger [13], so that

(L(saXO))zf(saza XD) < (log q(lt| + 2))A
Then,

2 23
+/ < / (log qT)A ————do
‘/I:l L~ 1-9(T,q) ) T(T + 1)

which tend to 0 by T' — oco,and

T 4 zz_ﬂ(tvq)
Lo, Lg 0
to Uj
—I—/ zH”dt—i—/ 2do
0 1/2+6

< z2e—c\/10gz

uniformly for 7 > 1, g < exp{+/log z}.

Hence we have

/ A, (v, xo)du
0

_ 1 L ’ -
= i ), B £z %0 155

27
= / ®, 5(u,q)du + O(zze_c\’ leg =),
0

By the way, since

log{(s — 1)L(s,x0)} < 4/log 2q

for s € Ls because of L(s,x0) = ((s)[[,,(1—p7*), we have

d3+0( 2 —cﬂlogz)

zé(z’Q) iéz&(”a‘])
S [ s = 50 001 for 230 = 1) 772

2m

CA‘\/Iong / / )(8__1)—zzc~1d8
1/2+46 [J—1|:'r

(log =)/ 2
eCA\/long{(logz)A—l/ u—Ae—udu + rl—Azr}

r loga
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where we put (1 — s)logz = u. Now we choose » = 1/log 2, this is

< eC4VIB2(Jog 2)471 < exp{C' A(log z)/*}.

Hence

a+§
/ A, (u, x)du

@&+§ =
[ st [ e ot
0 0

= E§z,6(z’ Q) + €2 ;‘5(2 + foa q) + O(zze”cvlosw) (0 <0< 1)
= £§z,6(Z,Q) + 0(62 exP{C'A(logz)1/4}) + 0(226_6‘/1053).
Hence using (3)and choosing £ = z exp{—c+/logz/2}/2 make

A, (2, x0) =%.,6(2,9) + O(£ exp{C' A(log 2)'/*}) + O(¢ " 2?e™ Vo8 )
+ O(tlog? z) + O(2(4+1)/(4+2))
=¥, s5(z,q) + O(ze™V l°“"’/4).

Next we consider for y = 1 which is the exceptional character with
respect to the zero on the real axis.

If Siegel zero B, of L(s, 1) exists in the range ) > 1—c/(2log 2q), we
replace the path of integration to 23:1 L; which is defined as follows. :

L, is the segment [2 — T, 1 —5(-T, q) —:T],

L, is the curve s =1 —g(t,q) + it (=T <t < —ig)

and the segment [ — itg,n —i(F; — 1) tan b ],

Lg is the segment [ — (8, — n)tan®, By + rie~*(7=9)],

Lyis thearc s =p; +re?(—(r—0) < p <7 —19),

Ly is the segment [B; + 1€ ("9, 5+ i(B; — 5) tand],

Lg is the segment [+ i(B; — 1) tanb, 5+ it ]

and the curve s =1 —95(t,q) +1t (Lo <t <T),

Ly is the segment [1 — 5(T,q) + T, 2 +:T|.

Here 9(t,q) = ¢/ logq(|t|+2), n = 1—5(to, q) and tois suffciently large
number to make 1 —¢/(log2q) < 7 < 1 —c/(2log2g). Any positive
numbers »; and 6 are satisfying 7 < §1—r1, 0 < (81 —n)tand < tg. Let
Lmg_,o(Ls + Ly + Ls) = L.

As the same as the case for y = yo, we have

s+1
/ (L(s,X]_))zf(s,Z,Xl)z—ds < zze—c\/]ogas.
L1+L2+L6+L7 8(8 + 1)
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Hence

/ A, (u,x1)du
0

_ ! (266, 32))" 70,2, (

71
@

)cls + O(z?e” \/h’?)

27
= / ®,(u,x1)du+ O(z?e™V 1°g°°), say.
0
We can see I
log (3,X1)
s—p
for s € I by Hilfssats 7 of Rieger [13], so that

< loglog4q

(P—(‘s—’}—i‘z)zf(s,z,m) < (log4q)©4.

s—p
Hence
P (:c X1 /(L )Xl f(s)Z,Xl) —ds
L(s 4. ds
/( s(__)éi) (8,2, x1)(s = Br)"2" =P —
Bi—7a
<o (logtg ([ T+ [ e—pre s
7 [s—Bil=71
(logz)/2
< o (log4g) A {(log2)t™1 [ wrAe v dut ol
71 loga

where we put (81 — s)logz = u. Now we choose 7, = 1/log z, this is
< zP1(log 49)%“ (log 2)* ™! < 2P (log z)° 4.

Here we have

z+¢
/ A, (u,x1)du

a4+ >
:/ q’z(“’Xl)du—/ &, (u,x1)du + O(z’e™V18)
0 0

= €3 (2 +£0, x1) + O(zPe™VI8=) (0 <6 <1)
< £zﬂ‘(logz)0 A4 gl Vg3,
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Hence using (3)and choosing ¢ = z exp{—c+/logz/2}/2 make

Az(za Xl) <<Zl81 (log z)C'A + £—1=Bze—-¢:1 /log =
+ ¢logh & + (4FD)/(4+2)

<<zﬂl(logz)6".4 + ze—c\/logz/‘l

On the other hand if 8; <1 —¢/(2log2q), we replace the path of

integration to ) ;_; , ¢ ; L; which is defined as follows.:

L, is the segment [2 — T, 1 — n(-T,q) — iT'],
Ly is the curve s =1 —9(t,qg) +it (T <t <0)
Lg is the curve s =1 —9q(t,q) +it (0<t < T),
Ly is the segment [1 — 5(T,q) + T, 2 +:T|.

Here n(t, q) = ¢/(4log q(lt] +2)).

As the same as the last case we have

s+1
(L(s,x1))" (5, 2, x1) ———ds < z?e~V1o82.

/;11+L:+L3+L7 8(8 + 1)

Hence

/ A, (u,x1)du < 2le Ve,

0

By using (3), we have

A.(z,x1) <<€—1:cze_c\/ loga £log‘4 z + 2(4+1)/(4+2)

<<ze‘°@/4_
Hence in either case we have
A(z,x1) < zﬁ‘(log z)C'A + ze—c\/lo?/r;,
where we note that
2 (log 2)°'4 < pe-=vimEals

for the case f1 <1—¢/(2log2q).

Finally we consider for the case x # xo,x1. The deformation of the
path of integration is as the same as the case §; < 1 — ¢/(2log 2q) for

X = X1,apart from 7(t,q) = c/logq(|t| + 2).
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Similar observation leads

Az(z’X) < ze—cg/loga:/'i.

As a consequence of these, we have, by replacing C' to Cand c¢/4 to
¢, we have

A, (2,%) = Eo®, s(2,q) + E10(2P*(log 2)°4) + O(ze™cV1°8®),

where FEgtakes lor Oaccording as y = ygor not, and F; does 1or
0 according as y = 1 or not.
Hence we have

1 —
Az(zaQa l) = _(q_)' Z X(I)Az(‘mX)
v x(modq)
281

v(q)

= -8, 4(2,) + O( 2 (log 2)°4) + O(aeV/e),

v(q)

Siegel’s theorem makes

zﬂl

(P(q) (log z)CA < ze—cvlogm

uniformly for ¢ < (logz)".

Now it remains the asymptotic expansion of ®, ;(z,q). We define
regular functions B,,(z,q) as Taylor coeflicients

{(s = ) I(s,x0)F £(5,5:%0) 7 = 3 Bm(2,0)(5 — )™ + Rav(s,2,a)

m=0

for s € Ls, |2| < A, where N is any fixed positive integer, especially

BO(Z)q) = (@)zf(laz,XO)

Bulz,0) = (B2 {(er+ 2 Y 222 — 1)£(3, 2, x0) + (1,2 00

Pl

where +is Euler constant.
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Since we can see Ry (s,z,q9) < (s — 1)V,

@z,ﬁ(z)q) = %‘/I‘; {(3 - l)L(S)XU)}zf(s,Z,XQ) 3-—1(3 _ 1)—;z,ds
27rz / /; )Z Bo(z,q)(s —1)™ %2~ 1ds

Ls m=o0

+ Zr“ RN(s,z,q)(s —1)"%2*"lds

where T'is the path which consist of the segment (—oco,7—7], the arc s =
i+re!? (—7 < o < ) and the segment [1 — r,—oc0). By substituting
(s —1)logz = w, we find

1
oy /(s~l)m et~ lds—(logz)z me 12 { W™ %eYdw

771, T
B (logz)z m—1
- T(z—-m)

The remaining integrals are to be the error term which is proved in

Ivié[6].
LEMMA 1.2. We have

log L(s, %) < (log g([t| + 2))*+20(x) -2+«

uniformly for O(x) < oo <o <1, [t| > Eﬁ, qg>1.

This is proved in the same way as Theorem 14.2 in Titchmarsh [16],
which is the case of ¢ =1 and 0 = 1/2.

The Lemma is also a generalization of Lemma 1.2 in [11] which is the
case of ¢ = 1.

We define the error terms

AZ:5(:E1X) = Az(zaX) - EOQz,é(z)q),
1
Az’5(:c,q, l) = Az(za% l) - —_—QZ,J(z)q)’
¢(q)

and let

a.(x) = i%f inf{o: A, s(z,x) < 2%},

azuqu = iI;f inf{a : AZ,J(z)q)l) << za}.
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" THEOREM 1.3. We have

a.(x) < 0(x)

for any z € C under the assumption that a,(n) < nt/2+e,
Remark. Theorem 1.3 leads us easily to that

0fz,q,l S ®q
because of the relation
1 —
Azﬁ(“’» q, l) = 75 Z X(l) Az,ﬁ(z’ X)‘
v(a)
x(modgq)

Proof. By Lemma 3.12 in Titchmarsh [16], 4,(=,x) has the expression

1 T 2 22
o) =5z [ (B0 (o205 +0(5) + 0(*+)
278 Jo_ ;T 8 T
uniformly for 7" > 1.

For x = xo, the path of integration can be replaced by 23:1 L; which
is defined as follows :

L is the segment [2 — T, n —iT],

Ly is two segments [n—iT, n—i(1—n)tand|+[n—i(1—7) tané, 1/2+
6 —i(1/2 —8)tanb],

L3, Lyand Ly are the same as in Lemmal.l,

Lg is two segments [1/2 + § +4(1/2 — §) tan8, 5+ i(1 — n)tand] +
[7+41—mn)tanb, n+ T,

L7 is the segment |5+ T, 2+ iT].

Here 7 is a constant such that ©(xo) < 7 < 1, and non negative

number § and any positive numbers rand 6 are such that 1/2 46 <
7<l—-7r 0<(1—n)tand < 1.

Asin Lemma 1.1, L3+ Ly + Ly becomes Ls by allowing 8 | 0.
From Lemma 1.2, we have
(L(s,x0))* f(8,z,x0) < (q([t| + 2))°

for s € Ly, Ly, Lg, L7. Therefore,

2 2
/ +/ <</ (qT)sz_da_<<ch€~lz2,
L, Ly 7 '
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T z'q U]
/ +/ < / (gt)* ——=dt + / g°2"do L ¢°T*2".
Ly JLe 0 t+1 1/2+6

Hence
2
A.(2,%0) = B, 5(2,0)+0(¢'T* %)+ O((aT)' 2")+O(5) +O(& /7).
By taking T = 2%, = ©(xo) + & we have

Al(za XO) = §Z,5(z, q) + 0(20(X0)+4e)

uniformly for ¢ < =.
For x # xo, the path of integration is replaced by Ei:1,2,6,7 L;.

L, is the segment [2 — iT, n —iT|, L, is the segment [y —iT, 7],
Lg is the segment [7, n+4T'], Ly is the segment [+ T, 2 +14T],
where 7 is a constant such that O(y) <y < L

By similar way, we find
A (z,x) € @0+,

Hence

A,,(:B,x) = EO‘I’z,g(iB,q) + O(zo(x)+4e)’

this proves the theorem.

THEOREM 1.4. We have

O(x) < az(x)

forany z € C — Q™.

Remark. Theorem 1.4 leads us easily to that
O(x) < Max ;g

because of the relation

Az, 6(21 X) = Z X(l) Azy 5(2” q’ l)
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Proof. First, we suppose that o > 2. Then,
z 6(‘3 q)
1 ; zv 1
= / 7wt ), (Ee30) flo ) )
v s—1 dew
= 5 | oo sz [ da) 22

27r
- 55 [ ooy f(w,z,m)(—d%)
- 211 (L(w x0))* f(w, 2 Xﬂ)“‘
+§i— (L(w,Xo))‘f(w,z,Xo)sCl_w

The interchange of the order of integration is justified because of the
absolute convergence. Hence

z <A, z, X

() fez0=s [~ 222

= FEy s/ ____Qz’g(z,q) dz + s/ —————Az’a(z’X) da
1 1

zo+1 zl+1

. Eo dw

i Ls(L(W:Xo))Z (w Z,Xo) w

E d ® A, ,
+ o (L(‘*’»XO)) F(@,2,%0)—— + s/ —’;,(Tzlx—)dz. (4)
1

271 s —w
We put
Lyy={s:00<o}—{s:]s=1|<r}—-{s:t=0,0 <1}

for 1/2 < o9 < 2. Then on the right hand side of (4) , the first and the
second term can be continued analytically for s € L/, as a function of s,
while the third term can be continued for o > a,() since the involved
integral converge uniformly for & > a,(x). Hence the right hand side of
(4) is regular for s € L, (y,) in the case for x = xp, and for & > a,(x)
in the case for x # xo.

On the other hand the left hand side of (4) has logarithmic singularities
at the zeros of L(s,x) when s € C — Q™.
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We therefore conclude that O(x) < a,(x) for any z € C — QT since
L(s,x0) vanishes neither on the real axis (¢ > 1/2) nor near the point
s=1.

Remark.

If we suppose that all the zeros of L(s,x) are simple, Theorem 1.4
holds for all z € C — N.

Now Theorem 1 follows by taking f(s,z) = 1.
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§2. The Asymptotic Formula for =;(z,q,l)

Throughout this section, we suppose that a,(n) is regular for |z| < A,
and has Taylor expansion at z = 0 such that a,(n) = Y o, cx(n)z* for
|z] < A with A > 1.

LeMMa 2.1. We have

1 1 Qz 5(2,q)
Crle,q,l) = E ce(n) = ——/ e i 1
W(z:0.0) ,,<, () o(q) 27i J, =y 2MPT

n=l (modg)

+ O(ze——cw/log:b)

uniformly for k> 1, ¢ < (logz)™, (g,1) =1.
Further, if we put

1 ®, 5(=,q)
= [ e,
|2]=1 2k+1 ’

271

then Fj s;(2,q) has the following asymptotic expansion

Qm 4(loglog ) z(loglog z)*~1
F
hol29) = logz Z (logz)™ +0( (log )V +1 )

for every k, where @, .(z) are polynomials of degree not exeeding
k — 1, especially the coeflicient of 2! of Qq(z)is 1.

Proof. Since A4,(z,q,!) is regular for |z|] < A4 as a function of z, and
Ci(z,q,1) is Taylor coefficient of z*, it follows by using Lemma 1.1 that

1 A, (=, q,])
unan = [ Mzl
) |z|]=1 Zht1

271
1 1 3, 1 A, 4
_ ___/ ,a(z,Q)dz+_./ (2 g )dz,
<P(Q) 2mi |z|=1 Zkt1 2w |z|=1 zk+1
where
1 Azyg(z,q,l)

= LAt h: SO, PP max 1A, (2, q,1)]
z|=1

271 |z|=1 Zk+1
< ze—c\/logz

which proves the first half.
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Now, we expand the principal term asymptotically. By using the
asymptotic expansion of &, ;(z,q) proved in Lemma 1.1, Fy, s(2,q) has
the following expression

N-1

¢ 1 (log ) B..(2,9)
F e — d
b o(2,9) log z 271 [4:1 Zk-1 — (log 2)™T'(z —m) z

z 1 (log z)®*
+0( (log 2)V+1 273 /I;|=1 Zht1 ?)

Then, if we denote

(s}

B, . 2. (logl !
(Z1Q) :Zem,i,qzz) (log:c)z :Z(Og l(')gz) zl’

I'(z —m) i=1 1=0

the leading term can be deformed

z 1 / (log2)* X~ _ Bm(za)
lz|=1

log z 2x% gt = (log2)™I(z — m)

z
~ loge mz::o (log )™
/ E loglog:c Z i1,
27rz |z Cm.ing

1=1 1=¢

m’)q
logz z (log:c)m Z I -+ (loglog 2)

I4+i=h
1>0,i>1

€Em, k l,q i
log z Z (log z)m 4 Z (loglog )

)k—l

- Qm’q(log log z) z(loglog =
B logz < Z (log =)™ O (log z)N+1 )

where Q. 4(2) = 1‘01 em k—1,q(I') 12" are polynomials of degree not
exceeding k — 1.

On the other hand

z 1 (logz)ﬁzd < / log 2
(log ¥+ 2mi Ji,icy 21 (log @)V 4 Jyyjzy 2o

&

< (log )V

|dz|
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Hence
F, k, 6 (za Q)

N-2
I Qm, 4(loglog z) z(logloge
~ logz Z + O

)k—l z
(log2)™ Goge)™ ) " N iogay®):

This proves the Lemma by replacing N to N + 1.

Remark.
For k = 1, we can express the main term in terms of the logalithmic
integral. Namely, we start from the expression

&, 5(z,q) :/:(%5 [ (Bx0)) F0, 513002 da) do -+ O(1)

and define B,, (2, g) by Taylor coefficients of
{(8 - 1)L(8,X0)}zf(8,Z,X0)
() LS
:( q )zf(l’Z,XO Z ,Q)s—l) +RN(8 z,q)

instead of B,,(z,q). Then similar consideration to the asymptotic
expansion in Lemma 1.1 and Lemma 1.3 make

® du
F — 1/2+4
Lo(e,0) = [+ 0@,

so that

1 ? du Yoy
Ci(=,q,l) = / + O(ze~cVios=),
16D =0 )y Togu T )

This satisfies the assertion.

We define the error terms
R, 5(2,x) = Ci(z,x) — EoFy, 5(2,q)

1
Ry, 5(2,q,1) = Cr(=,q,1) — @Fk,é(%Q)

and let .
r(x) = ugf inf{r : Ry s(z,x) < 2"},

Tkl = H(}f inf{r : Rk,é(zaq, l) < 27}.
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THEOREM 2.2. We have

ru(x) = O(x)

for any k > 1.

Remark. Theorem 2.2 leads us easily to that
MAX Th,q! = S

by the relations that

1
Rk,&("’a‘]a l) = E Y(I)Rk,é(zvx)’
v(q)
x(modq)

Rk,é(zaX) = ZX(’) Rk,&(z) q, l)

Proof. From Theorem 1.3, we have

1 A, s(z .
Rk,é(‘caX) = % /ll %d‘z < ‘I'[l'a.Ji |Az,6(z,X)| < z@(x)-l—é )
z|=1 zl=

Hence r3(x) < O(x).

Conversely,
1 A, (=z,%x)
Cr(z,x) = %w/hl:l e 9
1 1 2+io0 zl 1
S — L g —d d
27ri ‘z|:1(27r7: Imico ( (3,X)) f(s)z1X) 8 s)zk+1 z
24100 z 8
:i: (L/ (L(S,X)) f(sazaX)dz)z_ds
271 Jy_joo  2WE Jiy = Zht1 s
lz|=1
1 24100 2°
=57 - Gk(s,x)T ds, say.

Here we have

Gl = Y g =i loe Ll )%~ 0(0,0,0)
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where f(®)(s,2,%) means the n-th derivative of f(s,z,x) with respect

to z. It follows that Gi(s,x) is regular for s € Le(y), and has the
expression

Gulo = 3o B oy

Thus

1 z*
2 / Gi(s, X)‘; ds.

Fk 6(3,‘1)

If we suppose o > 2, then

o[ P50 = [T [ Guen0 Do)

8

—_ w—s—1 _w
= = Gk(w,x)(/ 2= 1 da) =

1 1
= — G —+ — Gr(w, .
27t Jg, #(w, X) + 271 Jg, #(w:x) s —w

Hence

Gu(s,x) =Eo 8/ Gulz.x) X)

1 t+1
Fy 6(z,q) / Ry, 5(33,X)
=F, —-———-d e L
0 3/; o+l + 3 . oo+l dz
E d
:___Q: Gk(""aX)_w
2% Ls W
B d “ R
+ = | Gulw u +s/ —"'—i(%’l)dz. (5)
271 Jg, s —w 1 z

Now on the right hand side of (5),the first and the second term can
be continued analytically for s € L,/ as a function of s, while the third
term can be continued for o > r3(x), since the involved integral con-
verges uniformly for o > (). Hence the right hand side of (5)1is regu-
lar for s € L,,(y,)in the case for x = xo,and for & > rx(x)in the case
for x # xo.

But Gi(s,x)has singularities at zeros p = 8 + iy, say, of L(s,Xx).
In fact, if we consider the limit Gi(o + iv,x) as ¢ | @, under the
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assumption that p is a zero of order M,

Gk(o' + i‘)'a X)

~ 2 p_—’(kl_ i (og Lo +im )" FE=D o +iv,0,x)
=0 .
k
~ Z (I(kl_ f)! (Mlog(o- - ﬂ))l f(k—t)(Pa 0, X)

Z l‘(k 7)! Ml(_t)t f(k—l)(p,O,X) (c—B= e“)

~ Mkt” (t — o0),

for f*=9(p,0,%) is bounded and f(s,0,x) = 1. Hence we conclude
that O(x) < rix(x) whether x = xg,or not, for any k > 1since
L(s,x0) vanishes neither on the real axis (o > 1/2)nor near the point
s =1.

This completes the theorem.
Now Theorem 2 follows by taking

#(s,2) =1;[(1 + 2 - 5;)1 for (2 a,)

f(s,z) = for wk(z’q’l)

11— Ly or z
f(s,z)_];[(l_;;) (1 p,) f Qk( ’Qal)

which satisfy the assumptions on f(s,z2) at the top of sections 1 and 2.
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