On the Generalized Divisor Problem in Arithmetic Progressions

HIDEKI NAKAYA

Department of Mathematics, Kanazawa University (received: April 25, 1992)

Abstract. In this paper we investigate the asymptotic behavier of the summatory function $D_z(x,q,l)$ and $\pi_k(x,q,l)$, and its relation to the Riemann hypothesis for the Dirichlet L-function.

Introduction

One of the classical problems in analytic number theory which is now called "the Dirichlet divisor problem" is concerned with investigating the asymptotic behavier of $D_k(x) \equiv \sum_{n \leq x} d_k(n)$ where $d_k(n)$ means the number of ways of expressing n as a product of k natural numbers. Namely, $d_k(n)$ is a multiplicative arithmetical function such that

$$d_k(p^m) = {k+m-1 \choose m} \equiv \frac{k(k+1)\cdots(k+m-1)}{m!}.$$

It is well-known that $D_k(x)$ has an expression in the form

$$D_k(x) = x P_{k-1}(\log x) + \Delta_k(x)$$

where $P_k(x)$ is some polynomial of degree k, and $\Delta_k(x)$ is the error term. It seems that the essence of this problem is to establish some relationship between the order of $\Delta_k(x)$ and the property of $\zeta(s)$ since

$$\zeta^k(s) = \sum_{n=1}^{\infty} \frac{d_k(n)}{n^s} \qquad (\sigma > 1),$$

where $s = \sigma + it$ and $\zeta(s)$ is the Riemann zeta function. It is known that

$$\Delta_k(x) \ll x^{(k-1)/(k+1)+\varepsilon} \tag{0}$$

for every positive ε , and that the statement

$$\Delta_k(x) \ll x^{1/2+\epsilon}$$

24

for every k is equivalent to the Lindelöf hypothesis. Finally it is conjectured that

$$\Delta_k(x) \ll x^{(k-1)/2k+\varepsilon}$$

but any corresponding properties of $\zeta(s)$ is not revealed yet.

On the other hand some mathematician tried to generalize the divisor problem. Let $d_z(n)$ be a multiplicative function defined by

$$d_z(p^m) \equiv egin{pmatrix} z+m-1 \ m \end{pmatrix}$$

where z is a complex number. Then we have

$$\zeta^{z}(s) = \prod_{p} (1 - \frac{1}{p^{s}})^{-z} = \sum_{n=1}^{\infty} \frac{d_{z}(n)}{n^{s}} \qquad (\sigma > 1)$$

where $\zeta^z(s) \equiv \exp(z \log \zeta(s))$ and let $\log \zeta(s)$ take real values for real s > 1.

The generalized divisor problem is to find an asymptotic formula for $\sum_{n \leq x} d_z(n)$, which was observed for real z > 0 by A. Kienast [7] and K. Iseki [5] independently. A. Selberg [15] considered it for all complex z, his result being

$$D_z(x) \equiv \sum_{n \le x} d_z(n) = \frac{x(\log x)^{z-1}}{\Gamma(z)} + O(x(\log x)^{\Re z - 2})$$
 (1)

uniformly for $|z| \leq A$, where A is any fixed positive number. This was extended by Rieger [14] to arithmetic progressions such that

$$D_z(x,q,l) \equiv \sum_{\substack{n \leq x \\ n \equiv l \; (mod \; q)}} d_z(n) = (\frac{\varphi(q)}{q})^z \frac{x}{\Gamma(z)\varphi(q)} (\log x)^{z-1} + O((\frac{\varphi(q)}{q})^z \frac{x}{\varphi(q)} (\log x)^{\Re z - 2} \log \log 4q)$$

uniformly for $|z| \leq A$, $q \leq (\log x)^{\tau}$, (q, l) = 1, where A and τ are any fixed positive numbers. We note that when z is a natural number, $d_z(n)$ coincides with the divisor function in the Dirichlet divisor problem, and $d_{-1}(n)$ with the Möbius function.

Next, let $\pi_k(x)$ be the number of integers $\leq x$ which are product of k distinct primes. For k = 1, $\pi_k(x)$ reduces to $\pi(x)$, the number of primes not exceeding x.

C.F. Gauss stated empirically that $\pi_2(x) \sim x(\log \log x)/\log x$, and E. Landau proved that $\pi_k(x) \sim x(\log \log x)^{k-1}/(k-1)!\log x$ by using the prime number theorem. Selberg considered $D_z(x)$ not only for its own sake but also with an intension to derive

$$\pi_k(x) = \frac{xQ(\log\log x)}{\log x} + O(\frac{x(\log\log x)^k}{k!(\log x)^2})$$
 (2)

uniformly for $1 \leq k \leq A \log \log x$, where Q(x) is polynomial of degree k-1. Now we define $\pi_k(x,q,l)$ as a generalization of $\pi_k(x)$ by

$$\pi_k(x,q,l) \equiv \sum_{\substack{n \leq x \\ n \equiv l \, (mod \, q) \\ n = p_1 \cdots p_k \, (p_i
eq p_j)}} 1.$$

In this paper we shall consider the connections between the asymptotic formulas of $D_z(x,q,l)$, $\pi_k(x,q,l)$ and the location of zeros of the Dirichlet L-function. In particular we shall establish some necessary and sufficient conditions for the truth of the Riemann hypothesis, so that this paper gives a generalization of [1] to arithmetic progressions.

The main term of (1) and (2) is, however, inconvenient for our aim so that we introduce the following integrals as the main terms of $D_z(x, q, l)$ and $\pi_k(x, q, l)$ respectively:

$$egin{aligned} \Phi_z(x,q) = & rac{1}{2\pi i} \int_L (L(s,\chi_0))^z rac{x^s}{s} \, ds, \ F_{k,\,\delta}(x,q) = & rac{1}{(2\pi i)^2} \int_{|z|=1} \int_{L_\delta} (L(s,\chi_0))^z \ & imes \{ \prod_p (1 + rac{z\chi_0(p)}{p^s}) (1 - rac{\chi_0(p)}{p^s})^z \} rac{1}{z^{k+1}} rac{x^s}{s} \, ds \, dz \end{aligned}$$

where L is, for any r (0 < r < 1/2), the path which begins at 1/2, moves to 1-r along the real axis, encircle the point 1 with radius r in the counterclockwise direction, and returns to 1/2 along the real axis, and L_{δ} is, for every δ and any r (δ > 0, r > 0, δ + r < 1/2), the path which begins at 1/2 + δ , moves to 1 - r along the real axis, encircle the point 1 with radius r in the counterclockwise direction, and returns to 1/2+ δ along the real axis. Here we denote by χ_0 the principal character $mod\ q$.

The error terms are defined by

$$egin{aligned} \Delta_z(x,q,l) &= D_z(x) - rac{1}{arphi(q)} \Phi_z(x,q), \ R_{k,\,\delta}(x,q,l) &= \pi_k(x,q,l) - rac{1}{arphi(q)} F_{k,\,\delta}(x,q). \end{aligned}$$

Let

$$\Theta(\chi) = \sup\{ \sigma \, : \, L(\sigma + it, \chi) = 0 \}, \quad \Theta_q = \max_{\chi \, (modq)} \Theta(\chi).$$

Then the following Theorem 1 and 2 follow from more general results proved in sections 1 and 2 below.

THEOREM 1. There exists some constant c such that

$$\Delta_z(x,q,l) \ll x e^{-c\sqrt{\log x}}$$

uniformly for $|z| \leq A$, $q \leq (\log x)^{\tau}$, (q, l) = 1 where A and τ are any fixed positive numbers.

Further we have

$$\Delta_z(x,q,l) \ll x^{\Theta_q + \varepsilon}$$

uniformly for $|z| \leq A$, $q \leq x$, (q, l) = 1.

Conversely if $\Delta_z(x,q,l) \ll x^{\Xi+\varepsilon}$ for any l((q,l)=1) and for some $z \in C-Q^+$, where Q^+ denotes the set of all non negative rational numbers, then any $L(s,\chi)$ (mod q) has no zeros for $\sigma > \Xi$.

The main term $\Phi_z(x,q)$ has an asymptotic expansion

$$\Phi_z(x,q) = x(\log x)^{z-1} \sum_{m=0}^{N-1} \frac{B_m(z,q)}{(\log x)^m \Gamma(z-m)} + O(x(\log x)^{\Re z - N - 1})$$

uniformly for $|z| \leq A$. Here N is any fixed positive integer and $B_m(z,q)$ $(0 \leq m \leq N-1)$ are regular functions of z, especially $B_0(z,q) = (\varphi(q)/q)^z$.

THEOREM 2. There is some constant c such that

$$R_{k,\,\delta}(x,q,l) \ll xe^{-c\sqrt{\log x}}$$

uniformly for $k \geq 1$, $q \leq (\log x)^{\tau}$, (q, l) = 1.

Further we have

$$R_{k,\,\delta}(x,q,l) \ll x^{\Theta_q + \varepsilon}$$

uniformly for $k \geq 1$, $q \leq x$, (q, l) = 1.

Conversely if $R_{k,\,\delta}(x,q,l) \ll x^{\Xi+\varepsilon}$ for any l((q,l)=1) and for some $k \geq 1$, then any $L(s,\chi) \pmod q$ has no zeros for $\sigma > \Xi$.

The main term $F_{k,\delta}(x,q)$ has an asymptotic expansion

$$F_{k,\,\delta}(x,q) = \frac{x}{\log x} \sum_{m=0}^{N-1} \frac{Q_{m,q}(\log\log x)}{(\log x)^m} + O(\frac{x(\log\log x)^{k-1}}{(\log x)^{N+1}})$$

for every k and q. Here N is any fixed positive integer and $Q_{m,q}(x)$ are polynomials of degree not exceeding k-1, especially the coefficient of x^{k-1} of $Q_{0,q}(x)$ is 1.

Remark.

1. If we define $r_{k,\sigma,l}$ by

$$r_{k,q,l} = \inf_{\delta} \inf\{r: R_{k,\delta}(x,q,l) \ll x^r\}$$

Theorem 2 shows that $\max_{l} r_{k,q,l} = \Theta_q$. The statement $\Theta_q = 1/2$ for every q is equivalent to the truth of the Riemann hypothesis for Dirichlet L-function.

2. For k = 1, we can express the main term in terms of the logalithmic integral. Namely,

$$F_{1,\,\delta}(x,q) = \int_2^x \frac{du}{\log u} + O(x^{1/2+\delta}),$$

so that

$$\pi_1(x,q,l) = \frac{1}{\varphi(q)} \int_2^x \frac{du}{\log u} + O(xe^{-c\sqrt{\log x}}).$$

3. Similar results hold for $\omega_k(x,q,l)$ and $\Omega_k(x,q,l)$. Here

$$\omega_k(x,q,l) \equiv \sum_{\substack{n \leq x \\ n \equiv l \, (mod q) \\ \omega(n) = k}} 1, \quad \Omega_k(x,q,l) \equiv \sum_{\substack{n \leq x \\ n \equiv l \, (mod q) \\ \Omega(n) = k}} 1$$

where $\omega(n)$ means the number of distinct prime factors of n, and $\Omega(n)$ means the number of total prime factors allowing multiplicity.

§1. The Generalized Divisor Problem

Actually we prove a more general statement than Theorem 1 and Theorem 2.

Suppose $b_z(n)$ is an arithmetical function with a complex number z and let

$$f(s,z) = \sum_{n=1}^{\infty} rac{b_z(n)}{n^s} \qquad (\sigma > 1/2)$$

be absolutely convergent, and that f(s,0) = 1.

We define the multiplicative function $a_z(n)$ by

$$\zeta^z(s)f(s,z) = \sum_{n=1}^{\infty} \frac{a_z(n)}{n^s} \qquad (\sigma > 1).$$

If we put

$$f(s,z,\chi) = \sum_{n=1}^{\infty} rac{b_z(n)\chi(n)}{n^s} \qquad (\sigma > 1/2)$$

where χ is a Dirichlet character mod q, then

$$(L(s,\chi))^z f(s,z,\chi) = \sum_{n=1}^{\infty} \frac{a_z(n)\chi(n)}{n^s} \qquad (\sigma > 1).$$

Non negative number δ represent 0 or arbitrary small positive number according as

$$\lim_{s\to 1/2} f(s,z) < \infty$$

or not.

LEMMA 1.1. We have

$$A_z(x,q,l) \equiv \sum_{\substack{n \leq x \\ n \equiv l \ (mod g)}} a_z(n) = \frac{1}{\varphi(q)} \frac{1}{2\pi i} \int_{L_\delta} (L(s,\chi_0))^z f(s,z,\chi_0) \frac{x^s}{s} ds$$
 $+ O(xe^{-c\sqrt{\log x}})$

uniformly for $|z| \leq A$, $q \leq (\log x)^{\tau}$, (q, l) = 1, where χ_0 is the principal character mod q.

Further, if we put

$$\Phi_{z,\,\delta}(x,q) \equiv rac{1}{2\pi i} \int_{L_{\delta}} (L(s,\chi_0))^z f(s,z,\chi_0) rac{x^s}{s} \, ds,$$

then $\Phi_{z,\,\delta}(x,q)$ has the following asymptotic expansion

$$\Phi_{z,\,\delta}(x,q) = x(\log x)^{z-1} \sum_{m=0}^{N-1} \frac{B_m(z,q)}{(\log x)^m \Gamma(z-m)} + O(x(\log x)^{\Re z - N - 1})$$

uniformly for $|z| \leq A$. Here N is any fixed positive integer, $B_m(z,q)$ are regular functions of z to be defined in the proof, especially $B_0(z,q) = (\varphi(q)/q)^z f(1,z,\chi_0)$.

Proof. We put $A_z(x,\chi) \equiv \sum_{n \leq x} a_z(n)\chi(n)$ and restrict that $q \leq \exp{\{\sqrt{\log x}\}}$. Absolute constants C, c, and so on, are not necessary the same at each occurrence.

First, it should be shown that

$$A_z(x,\chi) = \xi^{-1} \int_x^{x+\xi} A_z(u,\chi) du + O(\xi \log^A x) + O(x^{(A+2)/(A+1)})$$
 (3)

where $\xi = \xi(x)$ satisfies that $1 < \xi < x/2$.

If we denote $D_z(x,\chi) \equiv \sum_{n \le x} d_z(n)\chi(n)$,

$$\begin{split} \sum_{x < n \le x + \rho} a_z(n) \chi(n) \\ &= \sum_{n \le x + \rho} b_z(n) \chi(n) D_z((x + \rho)/n, \chi) - \sum_{n \le x} b_z(n) \chi(n) D_z(x/n, \chi) \\ &= (\sum_{n \le x + \rho} b_z(n) \chi(n) D_z((x + \rho)/n, \chi) - \sum_{n \le x + \rho} b_z(n) \chi(n) D_z(x/n, \chi)) \\ &+ (\sum_{n \le x + \rho} b_z(n) \chi(n) D_z(x/n, \chi) - \sum_{n \le x} b_z(n) \chi(n) D_z(x/n, \chi)) \\ &= \sum_{n \le x + \rho} b_z(n) \chi(n) \sum_{x/n < m \le (x + \rho)/n} d_z(m) \chi(m) \\ &+ \sum_{n \le x < n \le n} b_z(n) \chi(n) D_z(x/n, \chi). \end{split}$$

for $1 < \rho \le \xi$. Here the second term is 0 whereas the first term is

$$\ll \rho \log^A x + x^{(A+1)/(A+2)}$$
.

Because that $|d_z(n)| \leq d_k(n)$ where k = [|z|] + 1, and the well known result (0) make $\sum_{x < n \leq x + \rho} d_z(n) \ll \rho \log^{k-1} x + x^{k/(k+1)}$. Hence we have

$$\sum_{x < n \leq x + \rho} a_z(n) \chi(n) \ll \rho \log^A x + x^{(A+1)/(A+2)}.$$

On the other hand

$$\xi^{-1} \int_{x}^{x+\xi} A_{z}(u,\chi) du = A_{z}(x,\chi) + O(\xi^{-1} \int_{x}^{x+\xi} \sum_{x < n \le u} a_{z}(n) \chi(n) du)$$

$$= A_{z}(x,\chi) + O(\sup_{0 < \rho \le \xi} |\sum_{x < n < x+\rho} a_{z}(n) \chi(n)|)$$

Hence we obtain (3).

We start from the expression

$$\int_0^x A_z(u,\chi) du = \lim_{T \to \infty} \frac{1}{2\pi i} \int_{2-iT}^{2+iT} (L(s,\chi))^z f(s,z,\chi) \frac{x^{s+1}}{s(s+1)} ds.$$

By the Cauchy integral theorem, the path of integration can be deformed within the domain where the integrand is single-valued.

For $\chi = \chi_0$, we replace the path of integration to $\sum_{i=1}^{7} L_i$ which is defined as follows:

 $L_1 \text{ is the segment } [2-iT, \ 1-\eta(-T,q)-iT], \\ L_2 \text{ is the curve } s = 1-\eta(t,q)+it \quad (-T \leq t \leq -t_0) \\ \text{and two segments} \\ [\eta-it_0, \ \eta-i(1-\eta)\tan\theta] + [\eta-i(1-\eta)\tan\theta, \ 1/2+\delta-i(1/2-\delta)\tan\theta], \\ L_3 \text{ is the segment } [1/2+\delta-i(1/2-\delta)\tan\theta, \ 1+re^{-i(\pi-\theta)}], \\ L_4 \text{ is the arc } s = 1+re^{i\varphi}\left(-(\pi-\theta) \leq \varphi \leq \pi-\theta\right), \\ L_5 \text{ is the segment } [1+re^{i(\pi-\theta)}, \ 1/2+\delta+i(1/2-\delta)\tan\theta], \\ L_6 \text{ is two segments} \\ [1/2+\delta+i(1/2-\delta)\tan\theta, \ \eta+i(1-\eta)\tan\theta] + [\eta+i(1-\eta)\tan\theta, \ \eta+it_0] \\ \text{and the curve } s = 1-\eta(t,q)+it \quad (t_0 \leq t \leq T), \\ L_7 \text{ is the segment } [1-\eta(T,q)+iT, \ 2+iT].$

Here $\eta(t,q) = c/\log q(|t|+2)$, $\eta = 1 - \eta(t_0,q)$ and t_0 is suffciently large number to make $1/2 < \eta < 1$. Non negative number δ and any positive numbers r and θ are satisfying $1/2 + \delta \le \eta < 1 - r$, $0 < (1-\eta)\tan \theta < t_0$.

The contributions from the integral along $L_1+L_2+L_6+L_7$ are seen to give the error term, while the integral along $L_3+L_4+L_5$ gives the principal term since that path becomes L_δ allowing $\theta\downarrow 0$.

We can see

$$\log L(s,\chi_0) \ll \log \log q(|t|+3)$$

for $s \in L_1 + L_2 + L_6 + L_7$ by Hilfssatz 4 and 7 of Rieger [13], so that

$$(L(s,\chi_0))^z f(s,z,\chi_0) \ll (\log q(|t|+2))^A.$$

Then,

$$\int_{L_1} + \int_{L_7} \ll \int_{1-\eta(T,q)}^{2} (\log qT)^A \frac{x^3}{T(T+1)} d\sigma$$

which tend to 0 by $T \to \infty$, and

$$\int_{L_2} + \int_{L_6} \ll \int_0^T (\log q(|t| + 2))^A \frac{x^{2 - \eta(t, q)}}{t^2} dt$$
$$+ \int_0^{t_0} x^{1 + \eta} dt + \int_{1/2 + \delta}^{\eta} x^{\eta} d\sigma$$
$$\ll x^2 e^{-c\sqrt{\log x}}$$

uniformly for $T \ge 1$, $q \le \exp{\sqrt{\log x}}$.

Hence we have

$$egin{aligned} &\int_0^x A_z(u,\chi_0) du \ &= rac{1}{2\pi i} \int_{L_\delta} (L(s,\chi_0))^z f(s,z,\chi_0) rac{x^{s+1}}{s(s+1)} ds + O(x^2 e^{-c\sqrt{\log x}}) \ &= \int_0^x \Phi_{z,\delta}(u,q) du + O(x^2 e^{-c\sqrt{\log x}}). \end{aligned}$$

By the way, since

$$\log\{(s-1)L(s,\chi_0)\}\ll \sqrt{\log 2q}$$

for $s \in L_\delta$ because of $L(s,\chi_0) = \zeta(s) \prod_{p|q} (1-p^{-s}),$ we have

$$\begin{split} \Phi_{z,\delta}'(x,q) &= \frac{d}{dx} \Phi_{z,\delta}(x,q) \\ &= \frac{1}{2\pi i} \int_{L_{\delta}} \{(s-1)L(s,\chi_{0})\}^{z} f(s,z,\chi_{0})(s-1)^{-z} x^{s-1} ds \\ &\ll e^{CA\sqrt{\log 2q}} (\int_{1/2+\delta}^{1-r} + \int_{|s-1|=r})(s-1)^{-z} x^{s-1} ds \\ &\ll e^{CA\sqrt{\log 2q}} \{(\log x)^{A-1} \int_{r \log x}^{(\log x)/2} u^{-A} e^{-u} du + r^{1-A} x^{r} \} \end{split}$$

where we put $(1-s)\log x = u$. Now we choose $r = 1/\log x$, this is

$$\ll e^{CA\sqrt{\log 2q}}(\log x)^{A-1} \ll \exp\{C'A(\log x)^{1/4}\}.$$

Hence

$$\begin{split} & \int_{x}^{x+\xi} A_{z}(u,\chi) du \\ & = \int_{0}^{x+\xi} \Phi_{z,\delta}(u,q) du - \int_{0}^{x} \Phi_{z,\delta}(u,q) du + O(x^{2}e^{-c\sqrt{\log x}}) \\ & = \xi \Phi_{z,\delta}(x,q) + \xi^{2} \Phi'_{z,\delta}(x+\xi\theta,q) + O(x^{2}e^{-c\sqrt{\log x}}) \qquad (0<\theta<1) \\ & = \xi \Phi_{z,\delta}(x,q) + O(\xi^{2} \exp\{C'A(\log x)^{1/4}\}) + O(x^{2}e^{-c\sqrt{\log x}}). \end{split}$$

Hence using (3) and choosing $\xi = x \exp\{-c\sqrt{\log x}/2\}/2$ make

$$A_{z}(x,\chi_{0}) = \Phi_{z,\delta}(x,q) + O(\xi \exp\{C'A(\log x)^{1/4}\}) + O(\xi^{-1}x^{2}e^{-c\sqrt{\log x}}) + O(\xi \log^{A}x) + O(x^{(A+1)/(A+2)})$$
$$= \Phi_{z,\delta}(x,q) + O(xe^{-c\sqrt{\log x}/4}).$$

Next we consider for $\chi = \chi_1$ which is the exceptional character with respect to the zero on the real axis.

If Siegel zero β_1 of $L(s,\chi_1)$ exists in the range $\beta_1 > 1-c/(2\log 2q)$, we replace the path of integration to $\sum_{i=1}^{7} L_i$ which is defined as follows.:

 $\begin{array}{l} L_1 \text{ is the segment } \big[\, 2-iT, \, 1-\eta(-T,q)-iT \, \big], \\ L_2 \text{ is the curve } s = 1-\eta(t,q)+it \quad (-T \leq t \leq -t_0) \\ \text{and the segment } \big[\, \eta-it_0, \eta-i(\beta_1-\eta)\tan\theta \, \big], \\ L_3 \text{ is the segment } \big[\, \eta-i(\beta_1-\eta)\tan\theta, \, \beta_1+r_1e^{-i(\pi-\theta)} \, \big], \\ L_4 \text{ is the arc } s = \beta_1+r_1e^{i\varphi}\left(-(\pi-\theta)\leq\varphi\leq\pi-\theta\right), \\ L_5 \text{ is the segment } \big[\, \beta_1+r_1e^{i(\pi-\theta)}, \, \eta+i(\beta_1-\eta)\tan\theta \, \big], \\ L_6 \text{ is the segment } \big[\, \eta+i(\beta_1-\eta)\tan\theta, \, \eta+it_0 \, \big] \\ \text{and the curve } s = 1-\eta(t,q)+it \quad (t_0\leq t\leq T), \\ L_7 \text{ is the segment } \big[1-\eta(T,q)+iT, \, 2+iT \, \big]. \end{array}$

Here $\eta(t,q) = c/\log q(|t|+2)$, $\eta = 1-\eta(t_0,q)$ and t_0 is suffciently large number to make $1-c/(\log 2q) < \eta < 1-c/(2\log 2q)$. Any positive numbers r_1 and θ are satisfying $\eta < \beta_1 - r_1$, $0 < (\beta_1 - \eta) \tan \theta < t_0$. Let $\lim_{\theta \to 0} (L_3 + L_4 + L_5) = \ell$.

As the same as the case for $\chi = \chi_0$, we have

$$\int_{L_1+L_2+L_6+L_7} (L(s,\chi_1))^z f(s,z,\chi_1) \frac{x^{s+1}}{s(s+1)} ds \ll x^2 e^{-c\sqrt{\log x}}.$$

Hence

$$\begin{split} & \int_0^x A_z(u,\chi_1) du \\ & = \frac{1}{2\pi i} \int_{\ell} (L(s,\chi_1))^z f(s,z,\chi_1) \frac{x^{s+1}}{s(s+1)} ds + O(x^2 e^{-c\sqrt{\log x}}) \\ & = \int_0^x \Phi_z(u,\chi_1) du + O(x^2 e^{-c\sqrt{\log x}}), \quad say. \end{split}$$

We can see

$$\log \frac{L(s,\chi_1)}{s-\beta_1} \ll \log \log 4q$$

for $s \in l$ by Hilfssats 7 of Rieger [13], so that

$$(\frac{L(s,\chi_1)}{s-eta_1})^z f(s,z,\chi_1) \ll (\log 4q)^{CA}.$$

Hence

$$\begin{split} \Phi_z(x,\chi_1) &= \frac{1}{2\pi i} \int_{\ell} (L(s,\chi_1))^z f(s,z,\chi_1) \frac{x^s}{s} ds \\ &= x^{\beta_1} \frac{1}{2\pi i} \int_{\ell} (\frac{L(s,\chi_1)}{s-\beta_1})^z f(s,z,\chi_1) (s-\beta_1)^z x^{s-\beta_1} \frac{ds}{s} \\ &\ll x^{\beta_1} (\log 4q)^{CA} (\int_{\eta}^{\beta_1-r_1} + \int_{|s-\beta_1|=r_1}) (s-\beta_1)^z x^{s-\beta_1} ds \\ &\ll x^{\beta_1} (\log 4q)^{CA} \{ (\log x)^{A-1} \int_{r_1 \log x}^{(\log x)/2} u^{-A} e^{-u} du + r_1^{1-A} x_1^r \} \end{split}$$

where we put $(\beta_1 - s) \log x = u$. Now we choose $r_1 = 1/\log x$, this is

$$\ll x^{\beta_1} (\log 4q)^{CA} (\log x)^{A-1} \ll x^{\beta_1} (\log x)^{C'A}$$

Here we have

Hence using (3) and choosing $\xi = x \exp\{-c\sqrt{\log x}/2\}/2$ make

$$egin{aligned} A_z(x,\chi_1) & \ll x^{eta_1} (\log x)^{C'A} + \xi^{-1} x^2 e^{-c\sqrt{\log x}} \ & + \xi \log^A x + x^{(A+1)/(A+2)} \ & \ll x^{eta_1} (\log x)^{C'A} + x e^{-c\sqrt{\log x}/4} \end{aligned}$$

On the other hand if $\beta_1 \leq 1 - c/(2\log 2q)$, we replace the path of integration to $\sum_{i=1,2,6,7} L_i$ which is defined as follows.:

 $\begin{array}{l} L_1 \text{ is the segment } [\ 2-iT,\ 1-\eta(-T,q)-iT\], \\ L_2 \text{ is the curve } s=1-\eta(t,q)+it \quad (-T\leq t\leq 0) \\ L_6 \text{ is the curve } s=1-\eta(t,q)+it \quad (\ 0\leq t\leq T\), \\ L_7 \text{ is the segment } [\ 1-\eta(T,q)+iT,\ 2+iT\]. \\ \text{Here } \eta(t,q)=c/(4\log q(|t|+2)). \end{array}$

As the same as the last case we have

$$\int_{L_1+L_2+L_6+L_7} (L(s,\chi_1))^z f(s,z,\chi_1) \frac{x^{s+1}}{s(s+1)} ds \ll x^2 e^{-c\sqrt{\log x}}.$$

Hence

$$\int_0^x A_z(u,\chi_1)du \ll x^2 e^{-c\sqrt{\log x}}.$$

By using (3), we have

$$A_z(x,\chi_1) \ll \xi^{-1} x^2 e^{-c\sqrt{\log x}} + \xi \log^A x + x^{(A+1)/(A+2)}$$

 $\ll x e^{-c\sqrt{\log x}/4}.$

Hence in either case we have

$$A_z(x,\chi_1) \ll x^{\beta_1} (\log x)^{C'A} + xe^{-c\sqrt{\log x}/4},$$

where we note that

$$x^{eta_1}(\log x)^{C'A} \ll xe^{-c\sqrt{\log x}/4}$$

for the case $\beta_1 \leq 1 - c/(2\log 2q)$.

Finally we consider for the case $\chi \neq \chi_0, \chi_1$. The deformation of the path of integration is as the same as the case $\beta_1 \leq 1 - c/(2\log 2q)$ for $\chi = \chi_1$, apart from $\eta(t,q) = c/\log q(|t|+2)$.

Similar observation leads

$$A_z(x,\chi) \ll x e^{-c\sqrt{\log x}/4}$$

As a consequence of these, we have, by replacing C' to C and c/4 to c, we have

$$A_z(x,\chi) = E_0 \Phi_{z,\delta}(x,q) + E_1 O(x^{\beta_1} (\log x)^{CA}) + O(xe^{-c\sqrt{\log x}}),$$

where E_0 takes 1 or 0 according as $\chi = \chi_0$ or not, and E_1 does 1 or 0 according as $\chi = \chi_1$ or not.

Hence we have

$$egin{aligned} A_z(x,q,l) &= rac{1}{arphi(q)} \sum_{\chi(modq)} \overline{\chi}(l) A_z(x,\chi) \ &= rac{1}{arphi(q)} \Phi_{z,\delta}(x,q) + O(rac{x^{eta_1}}{arphi(q)} (\log x)^{CA}) + O(xe^{-c\sqrt{\log x}}). \end{aligned}$$

Siegel's theorem makes

$$rac{x^{eta_1}}{arphi(q)}(\log x)^{CA} \ll xe^{-c\sqrt{\log x}}$$

uniformly for $q \leq (\log x)^{\tau}$.

Now it remains the asymptotic expansion of $\Phi_{z,\delta}(x,q)$. We define regular functions $B_m(z,q)$ as Taylor coefficients

$$\{(s-1)L(s,\chi_0)\}^z f(s,z,\chi_0) s^{-1} = \sum_{m=0}^{N-1} B_m(z,q)(s-1)^m + R_N(s,z,q)$$

for $s \in L_{\delta}$, $|z| \leq A$, where N is any fixed positive integer, especially

$$egin{aligned} B_0(z,q) &= (rac{arphi(q)}{q})^z f(1,z,\chi_0) \ B_1(z,q) &= (rac{arphi(q)}{q})^z \{ (z\gamma + z \sum_{p|q} rac{\log p}{p-1} - 1) f(1,z,\chi_0) + f_s(1,z,\chi_0) \}, \end{aligned}$$

where γ is Euler constant.

Since we can see $R_N(s,z,q) \ll (s-1)^N$,

$$\begin{split} \Phi_{z,\delta}(x,q) &= \frac{1}{2\pi i} \int_{L_{\delta}} \{(s-1)L(s,\chi_{0})\}^{z} f(s,z,\chi_{0}) \, s^{-1}(s-1)^{-z} x^{s} ds \\ &= \frac{x}{2\pi i} (\int_{\Gamma} -\int_{\Gamma-L_{\delta}}) \sum_{m=0}^{N-1} B_{m}(z,q) (s-1)^{m-z} x^{s-1} ds \\ &+ \frac{x}{2\pi i} \int_{L_{\delta}} R_{N}(s,z,q) (s-1)^{-z} x^{s-1} ds \end{split}$$

where Γ is the path which consist of the segment $(-\infty, i-r]$, the arc $s = i + re^{i\varphi}$ $(-\pi \le \varphi \le \pi)$ and the segment $[1-r, -\infty)$. By substituting $(s-1)\log x = \omega$, we find

$$\frac{x}{2\pi i} \int_{\Gamma} (s-1)^{m-z} x^{s-1} ds = (\log x)^{z-m-1} \frac{1}{2\pi i} \int_{\Gamma'} \omega^{m-z} e^{\omega} d\omega$$
$$= \frac{(\log x)^{z-m-1}}{\Gamma(z-m)}$$

The remaining integrals are to be the error term which is proved in Ivić[6].

LEMMA 1.2. We have

$$\log L(s,\chi) \ll (\log q(|t|+2))^{1+2\Theta(\chi)-2\sigma+\varepsilon}$$

uniformly for $\Theta(\chi) < \sigma_0 \le \sigma \le 1$, $|t| \ge E_0$, $q \ge 1$.

This is proved in the same way as Theorem 14.2 in Titchmarsh [16], which is the case of q = 1 and $\sigma = 1/2$.

The Lemma is also a generalization of Lemma 1.2 in [11] which is the case of q = 1.

We define the error terms

$$\Delta_{z,\,\delta}(x,\chi) = A_z(x,\chi) - E_0 \Phi_{z,\,\delta}(x,q),$$

$$\Delta_{z,\,\delta}(x,q,l) = A_z(x,q,l) - \frac{1}{\varphi(q)} \Phi_{z,\,\delta}(x,q),$$

and let

$$egin{aligned} lpha_z(\chi) &= \inf_{\delta} \ \inf\{lpha: \Delta_{z,\,\delta}(x,\chi) \ll x^lpha\}, \ lpha_{z,\,q,\,l} &= \inf_{\delta} \ \inf\{lpha: \Delta_{z,\,\delta}(x,q,l) \ll x^lpha\}. \end{aligned}$$

THEOREM 1.3. We have

$$\alpha_z(\chi) \leq \Theta(\chi)$$

for any $z \in C$ under the assumption that $a_z(n) \ll n^{1/2+\varepsilon}$.

Remark. Theorem 1.3 leads us easily to that

$$\alpha_{z,q,l} \leq \Theta_q$$

because of the relation

$$\Delta_{z,\,\delta}(x,q,l) = rac{1}{arphi(q)} \sum_{\chi(modq)} \overline{\chi}(l) \, \Delta_{z,\,\delta}(x,\chi).$$

Proof. By Lemma 3.12 in Titchmarsh [16], $A_z(x,\chi)$ has the expression

$$A_z(x,\chi) = rac{1}{2\pi i} \int_{2-iT}^{2+iT} (L(s,\chi))^z f(s,z,\chi) rac{x^s}{s} ds + O(rac{x^2}{T}) + O(x^{1/2+arepsilon})$$

uniformly for T > 1.

For $\chi = \chi_0$, the path of integration can be replaced by $\sum_{i=1}^{7} L_i$ which is defined as follows:

 L_1 is the segment $[2-iT, \eta-iT]$,

 L_2 is two segments $[\eta - iT, \ \eta - i(1-\eta)\tan\theta] + [\eta - i(1-\eta)\tan\theta, \ 1/2 + \delta - i(1/2-\delta)\tan\theta],$

 L_3, L_4 and L_5 are the same as in Lemma1.1,

 L_6 is two segments $[1/2 + \delta + i(1/2 - \delta) \tan \theta, \ \eta + i(1 - \eta) \tan \theta] + [\eta + i(1 - \eta) \tan \theta, \ \eta + iT],$

 L_7 is the segment $[\eta + iT, 2 + iT]$.

Here η is a constant such that $\Theta(\chi_0) < \eta < 1$, and non negative number δ and any positive numbers r and θ are such that $1/2 + \delta \leq \eta < 1 - r$, $0 < (1 - \eta) \tan \theta < 1$.

As in Lemma 1.1, $L_3 + L_4 + L_5$ becomes L_{δ} by allowing $\theta \downarrow 0$.

From Lemma 1.2, we have

$$(L(s,\chi_0))^z f(s,z,\chi_0) \ll (q(|t|+2))^\varepsilon$$

for $s \in L_1, L_2, L_6, L_7$. Therefore,

$$\int_{L_1} + \int_{L_7} \ll \int_{\eta}^2 (qT)^{\epsilon} \frac{x^2}{T} d\sigma \ll q^{\epsilon} T^{\epsilon - 1} x^2,$$

$$\int_{L_2} + \int_{L_6} \ll \int_0^T (qt)^\varepsilon \frac{x^\eta}{t+1} dt + \int_{1/2+\delta}^\eta q^\varepsilon x^\eta d\sigma \ll q^\varepsilon T^\varepsilon x^\eta.$$

Hence

$$A_z(x,\chi_0) = \Phi_{z,\,\delta}(x,q) + O(q^{\varepsilon}T^{\varepsilon-1}x^2) + O((qT)^{\varepsilon}x^{\eta}) + O(\frac{x^2}{T}) + O(x^{1/2+\varepsilon}).$$

By taking $T = x^2$, $\eta = \Theta(\chi_0) + \varepsilon$ we have

$$A_z(x,\chi_0) = \Phi_{z,\delta}(x,q) + O(x^{\Theta(\chi_0)+4\varepsilon})$$

uniformly for $q \leq x$.

For $\chi \neq \chi_0$, the path of integration is replaced by $\sum_{i=1,2,6,7} L_i$.

 L_1 is the segment $[2-iT,\ \eta-iT], \quad L_2$ is the segment $[\eta-iT,\ \eta],$ L_6 is the segment $[\eta,\ \eta+iT], \quad L_7$ is the segment $[\eta+iT,\ 2+iT],$ where η is a constant such that $\Theta(\chi)<\eta<1.$

By similar way, we find

$$A_z(x,\chi) \ll x^{\Theta(\chi)+4\varepsilon}$$
.

Hence

$$A_z(x,\chi) = E_0 \Phi_{z,\delta}(x,q) + O(x^{\Theta(\chi)+4\varepsilon}),$$

this proves the theorem.

THEOREM 1.4. We have

$$\Theta(\chi) \le \alpha_z(\chi)$$

for any $z \in C - Q^+$.

Remark. Theorem 1.4 leads us easily to that

$$\Theta(\chi) \leq \max_{l} \alpha_{z,q,l}$$

because of the relation

$$\Delta_{z,\,\delta}(x,\chi) = \sum_{l} \chi(l)\,\Delta_{z,\,\delta}(x,q,l).$$

Proof. First, we suppose that $\sigma > 2$. Then,

$$\begin{split} s\int_{1}^{\infty} \frac{\Phi_{z,\,\delta}(x,q)}{x^{s+1}} dx \\ &= s\int_{1}^{\infty} \left(\frac{1}{2\pi i} \int_{L_{\delta}} (L(\omega,\chi_{0}))^{z} f(\omega,z,\chi_{0}) \frac{x^{\omega}}{\omega} d\omega\right) \frac{1}{x^{s+1}} dx \\ &= \frac{s}{2\pi i} \int_{L_{\delta}} (L(\omega,\chi_{0}))^{z} f(\omega,z,\chi_{0}) \left(\int_{1}^{\infty} x^{\omega-s-1} dx\right) \frac{d\omega}{\omega} \\ &= \frac{s}{2\pi i} \int_{L_{\delta}} (L(\omega,\chi_{0}))^{z} f(\omega,z,\chi_{0}) \frac{d\omega}{\omega(s-\omega)} \\ &= \frac{1}{2\pi i} \int_{L_{\delta}} (L(\omega,\chi_{0}))^{z} f(\omega,z,\chi_{0}) \frac{d\omega}{\omega} \\ &+ \frac{1}{2\pi i} \int_{L_{\delta}} (L(\omega,\chi_{0}))^{z} f(\omega,z,\chi_{0}) \frac{d\omega}{\omega}. \end{split}$$

The interchange of the order of integration is justified because of the absolute convergence. Hence

$$(L(s,\chi))^{z} f(s,z,\chi) = s \int_{1}^{\infty} \frac{A_{z}(x,\chi)}{x^{s+1}} dx$$

$$= E_{0} s \int_{1}^{\infty} \frac{\Phi_{z,\delta}(x,q)}{x^{s+1}} dx + s \int_{1}^{\infty} \frac{\Delta_{z,\delta}(x,\chi)}{x^{s+1}} dx$$

$$= \frac{E_{0}}{2\pi i} \int_{L_{\delta}} (L(\omega,\chi_{0}))^{z} f(\omega,z,\chi_{0}) \frac{d\omega}{\omega}$$

$$+ \frac{E_{0}}{2\pi i} \int_{L_{\delta}} (L(\omega,\chi_{0}))^{z} f(\omega,z,\chi_{0}) \frac{d\omega}{s-\omega} + s \int_{1}^{\infty} \frac{\Delta_{z,\delta}(x,\chi)}{x^{s+1}} dx.$$
(4)

We put

$$L_{\sigma_0} = \{s : \sigma_0 < \sigma\} - \{s : |s-1| \le r\} - \{s : t = 0, \sigma < 1\}$$

for $1/2 \le \sigma_0 \le 2$. Then on the right hand side of (4), the first and the second term can be continued analytically for $s \in L_{1/2}$ as a function of s, while the third term can be continued for $\sigma > \alpha_z(\chi)$ since the involved integral converge uniformly for $\sigma > \alpha_z(\chi)$. Hence the right hand side of (4) is regular for $s \in L_{\alpha_z(\chi_0)}$ in the case for $\chi = \chi_0$, and for $\sigma > \alpha_z(\chi)$ in the case for $\chi \ne \chi_0$.

On the other hand the left hand side of (4) has logarithmic singularities at the zeros of $L(s,\chi)$ when $s \in C - Q^+$.

We therefore conclude that $\Theta(\chi) \leq \alpha_z(\chi)$ for any $z \in C - Q^+$, since $L(s, \chi_0)$ vanishes neither on the real axis $(\sigma \geq 1/2)$ nor near the point s = 1.

Remark.

If we suppose that all the zeros of $L(s,\chi)$ are simple, Theorem 1.4 holds for all $z \in C - N$.

Now Theorem 1 follows by taking $f(s, z) \equiv 1$.

§2. The Asymptotic Formula for $\pi_k(x,q,l)$

Throughout this section, we suppose that $a_z(n)$ is regular for $|z| \leq A$, and has Taylor expansion at z = 0 such that $a_z(n) = \sum_{k=0}^{\infty} c_k(n) z^k$ for $|z| \leq A$ with A > 1.

LEMMA 2.1. We have

$$C_k(x,q,l) \equiv \sum_{\substack{n \leq x \\ n \equiv l \pmod{q}}} c_k(n) = \frac{1}{\varphi(q)} \frac{1}{2\pi i} \int_{|z|=1} \frac{\Phi_{z,\delta}(x,q)}{z^{k+1}} dz + O(xe^{-c\sqrt{\log x}})$$

uniformly for $k \geq 1$, $q \leq (\log x)^{\tau}$, (q, l) = 1. Further, if we put

$$F_{k,\,\delta}(x,q)\equivrac{1}{2\pi i}\int_{|z|=1}rac{\Phi_{z,\,\delta}(x,q)}{z^{k+1}}\,dz,$$

then $F_{k,\delta}(x,q)$ has the following asymptotic expansion

$$F_{k,\,\delta}(x,q) = \frac{x}{\log x} \sum_{m=0}^{N-1} \frac{Q_{m,q}(\log\log x)}{(\log x)^m} + O(\frac{x(\log\log x)^{k-1}}{(\log x)^{N+1}})$$

for every k, where $Q_{m,q}(x)$ are polynomials of degree not exceeding k-1, especially the coefficient of x^{k-1} of $Q_0(x)$ is 1.

Proof. Since $A_z(x,q,l)$ is regular for $|z| \leq A$ as a function of z, and $C_k(x,q,l)$ is Taylor coefficient of z^k , it follows by using Lemma 1.1 that

$$\begin{split} C_k(x,q,l) &= \frac{1}{2\pi i} \int_{|z|=1} \frac{A_z(x,q,l)}{z^{k+1}} dz \\ &= \frac{1}{\varphi(q)} \frac{1}{2\pi i} \int_{|z|=1} \frac{\Phi_{z,\,\delta}(x,q)}{z^{k+1}} dz + \frac{1}{2\pi i} \int_{|z|=1} \frac{\Delta_{z,\,\delta}(x,q,l)}{z^{k+1}} dz, \end{split}$$

where

$$\frac{1}{2\pi i} \int_{|z|=1} \frac{\Delta_{z,\,\delta}(x,q,l)}{z^{k+1}} dz \ll \max_{|z|=1} |\Delta_{z,\,\delta}(x,q,l)|$$
$$\ll x e^{-c\sqrt{\log x}}$$

which proves the first half.

Now, we expand the principal term asymptotically. By using the asymptotic expansion of $\Phi_{z,\delta}(x,q)$ proved in Lemma 1.1, $F_{k,\delta}(x,q)$ has the following expression

$$F_{k,\delta}(x,q) = \frac{x}{\log x} \frac{1}{2\pi i} \int_{|z|=1} \frac{(\log x)^z}{z^{k-1}} \sum_{m=0}^{N-1} \frac{B_m(z,q)}{(\log x)^m \Gamma(z-m)} dz + O(\frac{x}{(\log x)^{N+1}} \frac{1}{2\pi i} \int_{|z|=1} \frac{(\log x)^{\Re z}}{z^{k+1}} dz)$$

Then, if we denote

$$\frac{B_m(z,q)}{\Gamma(z-m)} = \sum_{i=1}^{\infty} e_{m,i,q} z^i, \qquad (\log x)^z = \sum_{l=0}^{\infty} \frac{(\log \log x)^l}{l!} z^l,$$

the leading term can be deformed

$$\frac{x}{\log x} \frac{1}{2\pi i} \int_{|z|=1}^{\infty} \frac{(\log x)^{z}}{z^{k+1}} \sum_{m=0}^{N-1} \frac{B_{m}(z,q)}{(\log x)^{m} \Gamma(z-m)} dz$$

$$= \frac{x}{\log x} \sum_{m=0}^{N-1} \frac{1}{(\log x)^{m}}$$

$$\times \frac{1}{2\pi i} \int_{|z|=1}^{\infty} \sum_{l=0}^{\infty} \frac{(\log \log x)^{l}}{l!} \sum_{i=1}^{\infty} e_{m,i,q} z^{l+i-k-1} dz$$

$$= \frac{x}{\log x} \sum_{m=0}^{N-1} \frac{1}{(\log x)^{m}} \sum_{\substack{l+i=k \ l \geq 0, i \geq 1}} \frac{e_{m,i,q}}{l!} (\log \log x)^{l}$$

$$= \frac{x}{\log x} \sum_{m=0}^{N-1} \frac{1}{(\log x)^{m}} \sum_{l=0}^{k-1} \frac{e_{m,k-l,q}}{l!} (\log \log x)^{l}$$

$$= \frac{x}{\log x} \sum_{m=0}^{N-2} \frac{Q_{m,q}(\log \log x)}{(\log x)^{m}} + O(\frac{x(\log \log x)^{k-1}}{(\log x)^{N+1}}),$$

where $Q_{m,q}(x) = \sum_{l=0}^{k-1} e_{m,k-l,q}(l!)^{-1}x^l$ are polynomials of degree not exceeding k-1.

On the other hand

$$\frac{x}{(\log x)^{N+1}} \frac{1}{2\pi i} \int_{|z|=1} \frac{(\log x)^{\Re z}}{z^{k+1}} dz \ll \frac{x}{(\log x)^{N+1}} \int_{|z|=1} \frac{\log x}{|z|^{k+1}} |dz| \ll \frac{x}{(\log x)^{N}}.$$

Hence

$$F_{k,\,\delta}(x,q)$$

$$=\frac{x}{\log x}\sum_{m=0}^{N-2}\frac{Q_{m,q}(\log\log x)}{(\log x)^m}+O(\frac{x(\log\log x)^{k-1}}{(\log x)^N})+O(\frac{x}{(\log x)^N}).$$

This proves the Lemma by replacing N to N+1.

Remark.

For k = 1, we can express the main term in terms of the logalithmic integral. Namely, we start from the expression

$$\Phi_{z,\,\delta}(x,q) = \int_2^x (\frac{1}{2\pi i} \int_{L_\delta} (L(s,\chi_0))^z f(s,z,\chi_0) x^{s-1} \, ds) \, dx + O(1)$$

and define $\widetilde{B}_m(z,q)$ by Taylor coefficients of

$$egin{aligned} \{(s-1)L(s,\chi_0)\}^z f(s,z,\chi_0) \ &= (rac{arphi(q)}{q})^z f(1,z,\chi_0) + \sum_{m=0}^{N-1} \widetilde{B}_m(z,q)(s-1)^m + \widetilde{R}_N(s,z,q) \end{aligned}$$

instead of $B_m(z,q)$. Then similar consideration to the asymptotic expansion in Lemma 1.1 and Lemma 1.3 make

$$F_{1,\,\delta}(x,q)=\int_2^xrac{du}{\log u}+O(x^{1/2+\delta}),$$

so that

$$C_1(x,q,l) = rac{1}{arphi(q)} \int_2^x rac{du}{\log u} + O(xe^{-c\sqrt{\log x}}).$$

This satisfies the assertion.

We define the error terms

$$R_{h,\delta}(x,\chi) = C_h(x,\chi) - E_0 F_{h,\delta}(x,q)$$

$$R_{h,\delta}(x,q,l) = C_h(x,q,l) - \frac{1}{\varphi(q)} F_{h,\delta}(x,q)$$

and let

$$egin{aligned} r_{k}(\chi) &= \inf_{\delta} \ \inf\{r: R_{k,\,\delta}(oldsymbol{x},\chi) \ll oldsymbol{x}^r\}, \ r_{k,q,l} &= \inf_{\delta} \ \inf\{r: R_{k,\,\delta}(oldsymbol{x},q,l) \ll oldsymbol{x}^r\}. \end{aligned}$$

THEOREM 2.2. We have

$$r_k(\chi) = \Theta(\chi)$$

for any $k \geq 1$.

Remark. Theorem 2.2 leads us easily to that

$$\max_{l} \; r_{k,q,l} = \Theta_q$$

by the relations that

$$egin{aligned} R_{m{k},\,\delta}(m{x},q,l) &= rac{1}{arphi(q)} \sum_{\chi(modq)} \overline{\chi}(l) R_{m{k},\,\delta}(m{x},\chi), \ R_{m{k},\,\delta}(m{x},\chi) &= \sum_{l} \chi(l) \, R_{m{k},\,\delta}(m{x},q,l). \end{aligned}$$

Proof. From Theorem 1.3, we have

$$R_{k,\delta}(x,\chi) = \frac{1}{2\pi i} \int_{|z|=1} \frac{\Delta_{z,\,\delta}(x,\chi)}{z^{k+1}} dz \ll \max_{|z|=1} |\Delta_{z,\,\delta}(x,\chi)| \ll x^{\Theta(\chi)+4\varepsilon}.$$

Hence $r_k(\chi) \leq \Theta(\chi)$.

Conversely,

$$\begin{split} C_k(x,\chi) &= \frac{1}{2\pi i} \int_{|z|=1} \frac{A_z(x,\chi)}{z^{k+1}} dz \\ &= \frac{1}{2\pi i} \int_{|z|=1} (\frac{1}{2\pi i} \int_{2-i\infty}^{2+i\infty} (L(s,\chi))^z f(s,z,\chi) \frac{x^s}{s} ds) \frac{1}{z^{k+1}} dz \\ &= \frac{1}{2\pi i} \int_{2-i\infty}^{2+i\infty} (\frac{1}{2\pi i} \int_{|z|=1} \frac{(L(s,\chi))^z f(s,z,\chi)}{z^{k+1}} dz) \frac{x^s}{s} ds \\ &= \frac{1}{2\pi i} \int_{2-i\infty}^{2+i\infty} G_k(s,\chi) \frac{x^s}{s} ds, \ say. \end{split}$$

Here we have

$$G_k(s,\chi) = \sum_{\ell=0}^k \frac{1}{\ell!(k-\ell)!} (\log L(s,\chi))^{\ell} f^{(k-\ell)}(s,0,\chi)$$

where $f^{(n)}(s,z,\chi)$ means the *n*-th derivative of $f(s,z,\chi)$ with respect to z. It follows that $G_k(s,\chi)$ is regular for $s \in L_{\Theta(\chi)}$, and has the expression

$$G_k(s,\chi) = \sum_{n=1}^{\infty} \frac{c_k(n)\chi(n)}{n^s} \qquad (\sigma > 1).$$

Thus

$$F_{k,\,\delta}(x,q)=rac{1}{2\pi i}\int_{L_{\delta}}G_{k}(s,\chi)rac{x^{s}}{s}\,ds.$$

If we suppose $\sigma > 2$, then

$$s \int_{1}^{\infty} \frac{F_{k,\,\delta}(x,q)}{x^{s+1}} dx = s \int_{1}^{\infty} \left(\frac{1}{2\pi i} \int_{L_{\delta}} G_{k}(\omega,\chi) \frac{x^{\omega}}{\omega} d\omega\right) \frac{1}{x^{s+1}} dx$$

$$= \frac{s}{2\pi i} \int_{L_{\delta}} G_{k}(\omega,\chi) \left(\int_{1}^{\infty} x^{\omega-s-1} dx\right) \frac{d\omega}{\omega}$$

$$= \frac{1}{2\pi i} \int_{L_{\delta}} G_{k}(\omega,\chi) \frac{d\omega}{\omega} + \frac{1}{2\pi i} \int_{L_{\delta}} G_{k}(\omega,\chi) \frac{d\omega}{s-\omega}.$$

Hence

$$G_{k}(s,\chi) = E_{0} s \int_{1}^{\infty} \frac{C_{k}(x,\chi)}{x^{s+1}} dx$$

$$= E_{0} s \int_{1}^{\infty} \frac{F_{k,\delta}(x,q)}{x^{s+1}} dx + s \int_{1}^{\infty} \frac{R_{k,\delta}(x,\chi)}{x^{s+1}} dx$$

$$= \frac{E_{0}}{2\pi i} \int_{L_{\delta}} G_{k}(\omega,\chi) \frac{d\omega}{\omega}$$

$$+ \frac{E_{0}}{2\pi i} \int_{L_{\delta}} G_{k}(\omega,\chi) \frac{d\omega}{s-\omega} + s \int_{1}^{\infty} \frac{R_{k,\delta}(x,\chi)}{x^{s+1}} dx.$$
 (5)

Now on the right hand side of (5), the first and the second term can be continued analytically for $s \in L_{1/2}$ as a function of s, while the third term can be continued for $\sigma > r_k(\chi)$, since the involved integral converges uniformly for $\sigma > r_k(\chi)$. Hence the right hand side of (5) is regular for $s \in L_{r_k(\chi_0)}$ in the case for $\chi = \chi_0$, and for $\sigma > r_k(\chi)$ in the case for $\chi \neq \chi_0$.

But $G_k(s,\chi)$ has singularities at zeros $\rho=\beta+i\gamma$, say, of $L(s,\chi)$. In fact, if we consider the limit $G_k(\sigma+i\gamma,\chi)$ as $\sigma\downarrow\beta$, under the

assumption that ρ is a zero of order M,

$$egin{aligned} G_k(\sigma+i\gamma,\chi) & & \sim \sum_{\ell=0}^k rac{1}{\ell!(k-\ell)!} \left(\log L(\sigma+i\gamma,\chi)
ight)^\ell f^{(k-\ell)}(\sigma+i\gamma,0,\chi) \ & \sim \sum_{\ell=0}^k rac{1}{\ell!(k-\ell)!} \left(M \log(\sigma-eta)
ight)^\ell f^{(k-\ell)}(
ho,0,\chi) \ & \sim \sum_{\ell=0}^k rac{1}{\ell!(k-\ell)!} M^\ell(-t)^\ell f^{(k-\ell)}(
ho,0,\chi) & (\sigma-eta=e^{-t}) \ & \sim M^k t^k & (t o\infty), \end{aligned}$$

for $f^{(k-\ell)}(\rho,0,\chi)$ is bounded and $f(s,0,\chi)=1$. Hence we conclude that $\Theta(\chi) \leq r_k(\chi)$ whether $\chi=\chi_0$, or not, for any $k\geq 1$ since $L(s,\chi_0)$ vanishes neither on the real axis $(\sigma\geq 1/2)$ nor near the point s=1.

This completes the theorem.

Now Theorem 2 follows by taking

$$f(s,z) = \prod_{p} (1 + \frac{z}{p^s})(1 - \frac{1}{p^s})^z$$
 for $\pi_k(x,q,l)$ $f(s,z) = \prod_{p} (1 + \frac{z}{p^s - 1})(1 - \frac{1}{p^s})^z$ for $\omega_k(x,q,l)$ $f(s,z) = \prod_{p} (1 - \frac{z}{p^s})^{-1}(1 - \frac{1}{p^s})^z$ for $\Omega_k(x,q,l)$

which satisfy the assumptions on f(s, z) at the top of sections 1 and 2.

REFERENCES

- 1. R. Balasubramanian and K. Ramachandra, On the number of integers n such that nd(n) < x, Acta Arith. 49 (1988), 313-322.
- H. Delange, Sur des formules dues à Atle Selberg, Bull. Sci. Math. 2, 83 (1959), 101-111.
- 3. H. Delange, Sur des formules de Atle Selberg, Acta Arith. 19 (1971), 105-146.
- R.D. Dixon, On a generalized divisor problem, J. Indian Math. 28 (1964), 187--196.
- 5. K. Iseki, On a divisor problem generated by $\zeta^{\alpha}(s)$, Natural Science Report, Ochanomizu Univ. 4.2 (1953), p. 175.
- 6. A. Ivić, "The Riemann zeta function," Wiley Interscience, New-York, 1985.
- 7. A. Kienast, Über die asymptotische darstellung der summatorischen funktion von Dirichletreihen mit positiven koeffizienten, Math. Z. 45 (1939), 554-558.
- 8. G. Kolesnik and G. Straus, On the distribution of integers with a given number of prime factors, Acta Arith. 37 (1980), 181-199.
- 9. E. Landau, "Handbuch der Lehre von der Verteilung der Primzahlen," Chelsea, New-York, 1969.
- 10. H. Nakaya, Master Thesis, Kanazawa Univ. (1989).
- 11. H. Nakaya, The generalized divisor problem and the Riemann Hypothesis, Nagoya Math. J. 122 (1991), 149-159.
- 12. K. Pracher, "Primzahlverteilung," Springer-Verlag, Berlin-Göttingen-Heidelberg, 1957.
- 13. G.J. Rieger, Über die Anzahl der als Summe von zwei Quadraten darstellbaren und in einer primen Restklasse gelegenen Zahlen unterhalb einer positiven Schranke II, J. Reine Angew. Math. 217 (1965), 200-216.
- 14. G.J. Rieger, Zum teilerproblem von Atle Selberg, Math. Nachr. 30 (1965), 181-192.
- 15. A. Selberg, Note on a paper by L.G. Sathe, J. Indian Math. 18 (1954), 83-87.
- 16. E.C. Titchmarsh and D.R. Heath Brown, "The Theory of the Riemann Zeta-Function," Oxford University Press, Oxford, 1986.