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Abstruct. Gaussian composition of binary quadratic forms is recalled
in some convenient forms and the composition of integral quadratic forms is
generalized in the case of congruence classes.

Introduction

In [3], Gauss has defined a composition of quadratic forms, and shown
that the copmposition induces a group structure of the unimodular equivalence
classes of quadratic forms. It is well-known now that there is an isomorphism
between the group of the unimodular equivalence classes of quadratic forms and
the group of the absolute ideal classes of a quadratic field.

The purpose of the present paper is to reformulate Gaussian composition
in some convenient forms and to generalize the above isomorphism to the case
of congruence class groups.

At first in Section 1, we recall the composition in [3] and reformulate them
in some convenient forms. In Section 2, we shall show a duplication formula
by direct calculation implied from the Gaussian compostion treated in Section
1, which has been implied from a syzygy in our previous paper [2]. Its ternary
form representation will be shown in Section 3.

In Section 4 we have a correspondence between equivalence classes of
quadratic forms modulo the congruence subgroup I'g(m) and congruence ideal
classes mod m, and in Section 5 an isomorphism between them as groups by
means of concordant forms in [1, Chap. 14]. Its ternary form representation
mod m in explicit forms will be given in Section 6.

§1. Gaussian composition of quadratic forms

Let R be an integral domain. We denote by f = [a,b, c] a binary quadratic
form f(z,y) = az? + bzy + cy? over R, and set [f] = [b72 béz], that is,
F(z,y) = [z,4][f] [z, 9)-

We recall the Gaussian composition in [3] arranging by means of matrices.
Let f; = [a1,b1,c1] and f, = [a3,bs, 2] be two binary quadratic forms. We call a

binary quadratic form F = [4, B, C] a Gaussian composition of f; and f,, when
there are square matrices P and @ of degree 2 such that

X=[$.1,’y1]Pt[732,y2], Y=[31,y1]Qt[22)y2]
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and ‘
F(Xa Y) = fl(zl,y1)fz,(zz,yz)-
When P = p'1 and Q = % , F is called a Gaussian composition
P2 Ps % gs

of f1 and f; by P and Q, or by [p1,p2,p},ps] and 01,92, 43, 9s]-
The following proposition is 1mphed from [3 Art. 235] by use of matrices
and changing some of letters.

ProrosiTion 1.1( [3, ART. 235]). Let

4

P1 D2 g1 gz
by Ps 92 9s
P11 D2 | )
Pl = ' ] 9 Ql = [ ' } 3
(1.2) < ) q2 q3. ) p-z p3 - )
P11 P2 D1 D3 P2 Ps
El = ’Fl = : aGl = )
| 1 gz | 91 g3 | L 92 93]
- i 3 ) -
D1  Pa D2 Dy D2 D3
E, = P = | 1Ge = .
\ | 91 93| | 92 G | g2 g3 ]
Let further
A= —|Q|, =|P|+1Qi|, C=-—|P|,
(1.3) ay = | By, bl |Fy| = |Fa|, e =[G,
az = |Ey|, bs=|Fi|+|F:|, c2=]Gsl,
and
fl = [al)bI’CIL f2 = [aZ)bZ)CZ]’ F= [AyB)C]'

Then F is a Gaussian composition of f; and f; by P and @Q, that is, we have
(1.4) F(X,Y) = fi(z1,n) fa(22, 92),

where

(1.5)

X =21, 1] Pilza, 9], Y = [21,11] Q %[22, 2]

The discriminants of f,, f» and F' are all coincide.
This is verified by direct calculation when the result has given. Gauss has

found it by analyzing the condition of (1.5) to be satisfied (1.4), which implies the
converse statement of Proposition 1.1 as follows by modifying Gauss’s method.
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ProposiTioN 1.6 ([3, ART. 235]). Let fi = [a1,b1,c1], f2 = [az,b2,¢2],
and F = [A, B,C] be guadratic forms of same discriminant D. Suppose that
F is a Gaussian composition of f, and f by [p1, 2,5, ps] and (1,43, 0bds),
that is, they satisfy (1.4) and (1.5). Then the coefficients of fi, f; and F are
determined by P and Q and the relations (1.2) and (1.3) exept trivial change of
signs of the coeflicients.

Proof. Let P = p,1 P2 and QQ = q,1 a2 . Define a matrix M3(z2,y2)
p, D3 92 93
by
(1.7) My(22,y2) = [Pt[@'z, yz],Qt[Zz,yz]].

Then [X,Y] = [21,y1]M (22, y2) and for fixed values of z3,y;, we have
(1.8) [21, 1] Ma(22, ¥2)[F] * Ma (22, y2) ‘21, 41]

= [21, 1) fa(22, v2)[fu] *[21, 31]-
This implies

(1.9) My(22,92)[F] Ma(22,92) = fa(22,92)[f1],
and by taking their determinants, we have

(1.10) | Ma(z2,92)|* = fa(z2,92)"

Now it follows from (1.7) and (1.10) that

(1.11) a3 = f2(1,0)* = [My(1,0)]" = | B/,

(1.12) 3 = £2(0,1)* = |M3(0,1)]* = |G,/?,
It is further easy to see by direct calculation that
|M2(1,1)] = | B2| + | F2| + | F1| + |Gl

|M(1, —1)| = |Bz| — | Fa| — | F1] +|Gal.

Thus (110) implies ((12 + bz +C2)2 = |E2| + leI + IFll -+ IG;I, (az - bz + 02)2 =
|E2| — | F3| — | F1] + |G2], and hence

(1.13) . by = (| F1] + | F5|)*.
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In the same way as above, let

(1.14)» M1(z1,y1) = [[21, 'yl]P’ [21,y1]Q]-

Then

(1.15) [X,Y] = My(z1,91) 22, v2] = [22,52] * M (21,31),
(1-16) M1(21, y1)[F] tMl(zl,yl) = f1(°31,y1)[f1],
(1.17) |Ma(21,91)|* = fa(z1, 1)

Then we have

(1.18) ol = £1(1,0)* = |My(1,0)]* = | 4|,

(1.19) ¢ = £1(0,1)? = |M(0,1)]*> = |G4/?,

and further
|M1(1,1)| = |B1| + | F1| = | F2| + |G,

|M1(1, -1)| = |Eq| — |F1| + | F2| + |G|

Hence
(1.20) b} = (|F1| — | Fa)®

Now, we claim that the left hand side of (1.4) is unique by given f;, f2, P and
@. To see this, it is enough to show that [X?, XY,Y?] gives three independent
vectors by suitable values of z1,z3,%1,7, and this is easily seen because of
infinitely many possibities of the values of each of z1,22,%1,y,. Thus, if the
coeflicients of f; and f, satisfy (1.3), then the coefficients of F' must also satisfy
(1.3). This is realy the possible case by Proposition 1.1, and the following
other cases are trivially possible: (i) F = (—f1)(—f2), (i) (—=F) = (=f1)(f2),
(iil) (=F) = fi(—f2). There is no other case than the above. because, D =
B? —4AC = b? — 4ajcy = bl — 4ayc; by assumption of the proposition. Hence
the signs of aj,c; must be follow suit by 4a;c; = (|Fi| — |F2|)* — D, and the
signs of ay, cy by 4azcy = (|Fi| + |F2|)? — D. The case changing sign of only by
or by is never happen. Because, if it happen, say the case of —by, then it is easy
for instance by replacing —y; instead of y; to see that (1.16) holds if the sign of
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p2 and p,, are changed. But this contradicts to the uniquness of the left hand
side as already seen above.

Remark 1.21. We define 8;(U) for a quadratic form f = [a,b,c] and a

Uy U2
square matrix U = by
Ug Ug
(122) ,Bj(U) = 20.'11.1'11,2 + b(u1u4 -+ u2u3) -+ 26’11,3’11,4.
Then
b/2 flui,us) B (U)/2
1.23 W[“ ]U=[ 1 ,
(:29) b2 BHU)/2 f(us,ua)

and the forms [1] to [8] of [3, Art. 235] are followed from (1.9) and (1.16). The
form [9] coincides with Br(Fy) + Br(F2) = 2b1b2, which is followed from (1.4)
by direct calculation.

Gauss has given a method to obtain a composition of given quadratic forms

f1 and f, as follows.

ProrosiTiON 1.24[3, ArT. 236]. Let fi = [a1,b1,c1], f2 = [az,b2,ca] be
primitive quadratic forms of same discriminant. Set

i by + b2

0 ay a2z 2

by —b

5 —aq 0 _ -t 5 2 cs

- —a b — b 0 c

2 2 1

by + by

_—'—:?'—— —C2 —Ci 0 ]

Choose elements [r],[q], [s] and [p] in R* as follows:
S'r#0,  S'r1="1d),

('l =1 ‘ol =5"sl.

- Let matrices P,(Q, P, amd @); be the same as in Proposition 1.1 by the

componens of [p| and [q]. Let further A,B,C and F = [A, B,C| be also as in
Proposition 1.1 .
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Then F is the Gaussian composition of f1 and f5.

Proof. We can recall Gauss’s proof as follows. Let

ol b - o

0 3 —C3 -t 5 bz
by + by
c1 0 — asy
T = 2
Ca ———— 0 aj
by —b .
_— E ) 2 —a9 ai 0 i

Then by the assumption a2 — 4aja3 = b2 — 4b, b3, we have T'S = 0. This implies
Ttlg] = TS*[*] = 0. Hence it follows from S*[s] = *[p] and [s]*[g] = 1 that
ay,as,as, by, by, by satisfy the condition of Proposition 1.1 by the components of
[p] and [g]. For instance, |Ey| = p1gs — p2q1 = (@183 + azss + (by + b2)s4/2)g2 —
(—a181— (b1 —b2)s3/2+ c284)q1 = a1(s191 + 5292) — 83(— (b1 — b2)q1/2 — a202) —
sa(c2q1—(b1—b2)g2/2) = a1(81q1+ 5292+ 5393 +354q4) —s3(—(b1—b2)q1 /2 —azqz+
a1qs) — 84(caq1 — (b1 — b2)g2/2 + a194) = a4, since [s]}[g] = 1 and T'?[g] = 0_1In
the same way, we have a, = |Fy|—|Fy|, etc. by Eq, Fy, Gy, B3, F3, G in the same
forms of Proposition 1.1. Then Propsition 1.1 implies that F is the composition
of f; and f, by [p] and [g].

For a binary quadratic form f(z,y) and a square matrix U of degree 2 ,

define fY by

(1.25) Y(=z,9) = f([=,4]').

ProrosiTioN 1.26. Let f; and f5 be two primitive forms of same discrim-
inant. Let f] = f’ and fy = g’ by Uy,U; € SLy(R). Let fs be the Gaussian
composition of f; and f, by matrices P and Q. Then f;3 is the Gaussian com-
position of f{ and f; by ‘U, PU, and *U,QU,.

Proof. By assumption, f3(X,Y) = fi(2z1,y1)f2(z2,v2), where

X = [zlyyl]Pt[z%yZ] and Y = [zlayl]Qt[zhyﬂ‘
Let
Pl = tUIPU27 Ql =* U].QU27
[zll)y;] = [zl,yl]tUl—la [z'27y12] = [zZ’yZ]tU;l‘
Then
X = (21, 4] UL UL PULUS 22, 92) = 24, ¥1) Py P[5, 93),
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Y = [zlvyl]thl tUlQU2U2_1t[zZay2] = [za)yi]Qlt[zlzay'z}’
fl(zlayl) = f],.(z'lay;.)) f2(z2’y2) = fé(z,my;)a

and
fa(X, Y) = f{(z;_, yll)fé(zlz’ y;)a
which proves the Proposition.

For two matrices My, M, of degree 2, we define [My, M,] € Z° by
(1.27)  [My, M) = [|Bo( My, M2)|, | Fo(My, M), |G1(Mn, Ms)),

| Eo( My, Ma)|, | Fo(My, M2)l, |G2(My, M2)]],

where E;(My, M,), F;(My, M3),G;(My, M) (7 = 1,2) be as in Propositionl.1
replaced their matrices P,Q by My, M,. It is easy to see that [M;, M,] =
—[Ms, M;y].

By Gauss [3, Art. 239], we have the following relation of two compositions
obtained by two pair of matrices {P, Q} and {R, S} respectively.

ProposiTion 1.28([3, ArT. 239]). Let fi = [a1,b1,c1], f2 = [a3,b2,¢2)
be two primitive integral forms. Let F be a composition of f1 and f; by P and
Q, and F be a composition f; and f, by R and S, where

Ty T2 . 81 89
] ’ S = ! °
7‘2 T3 82 83

Suppose that f; is primitive and let [A] = [Ay,--- A¢] be an element of Z¢
such that [A]*[P,Q] = 1.
a g
g |’

Set
a:[,\]t[R,Q], ﬁ:[’\]t[PvR]) 7:[’\]t[SaQ]1 5=[’\]t[P,S]'

P= , R=

P11 P2 q1 g2
; , Q= '
Py DPs ds 43

T =

where

Then we have |T| = 1, and further for j = 1,2 we have

E;(P,Q)T = E;(R,S), F;(P,Q)T = F;(R,S), G;(P,Q)T = G;(R,S).

Moreover

T[F)'T = [F).
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Proof. We can recall Gauss’s proof as follows. For instance, (1,1)-entry of
E,(P, Q)T is equal to ap; + Bq1 = [A]*[R, Qlp1 + [A] [P, Rlg: = [A]*([Rp1, Q] —

[qua P])
1 P2 1 2 1 T3 1 T3
=X\ n+ g1 | + Az P+ q |-
1 g2 Pr P2 g1 gs P1 D3
P11 P2 b1 Ps
= A7y + Ag7ry + oo =1r[Al¥[P,Q] = r1.
g1 g2 q1 G3

$2. Duplication

Suppose that p, = p), and g» = ¢} in Proposition 1.1. Then E; = E,,
G1 = G, and |F2| = 0. Thus we have the following proposition of duplication.

ProrosiTioN 2.1. Let

_|P1 P2 b= P1 p3 _|Pz P3
@ gl @ gsl|’ g gs|’
4=_|" 92’B= h P2+q1 QZ,C:__PI P2\
g2 gs g2 g3 P2 P3 P2 D3

Let further

P1 P2 ¢
X = ;
[931,‘!/1] [Pz pa] [22 yz],

Y = [21,?!1] {Z; Z:] t[zz,yz]-

Then

AX?+ BXY +CY? = (az? + beyy; + cyl)(azk + beyys + cyl).

The converse statement holds as in Proposition 1.1.

In our previous paper [2, Theorem 2.3], we have a duplication formula of a
unimodular equivalence class of quadratic foms, which will be implied from the
above Proposition 2.1 as seen below.

Let Z° =Z ® Z & Z. For an element a = [a1, a3, ag] of Z3, we set

(o] = [al a2/2}

a2/2 ag
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and

afz] = (2] [a]t["’] = alzi +azzi122 + aazg,

where [z] = [21, 23]. Note that we take quadratic forms with in the non-classical
definition, in contrast to [2]. Owing to the non-classical definition of forms, we
define 9, A, and g, which correspond to ¢, * and v of [2] as follows.

Let a = [a,a3,a3), B = [b1,b2,bs] and v = [c1,c3,cs] be elements of Z3.

Set
(2.2) P(a, B) = azbs — 2(a1bs + asby),
(2.3) P(a) = P(a, ) = af — 4a1as,
(24) (s 4 /\ﬁ = [albz - azbl, 2(a1b3 - 0.31)1), azba - 0,362]
_ [ a; as aiy ag az asg :I
Tl by Ba|T | By bs|'| By bsl]’
(25) Pa,p = ["/)(ﬂ)’ —2¢(a)ﬂ): '51)(“)]
Remark 2.6. Denote o' = [as,2a;3,a,] for @ = [a1,az2,a3]. Then a A S =

2(a' x '), where x stands for the usunal outer product.

The following equalities are immediately obtained by partly using the above
Remark.

(2.7) 4p(a A B) = P(pa,p),s
(2.8) Pap(2,Y) = P(Bz — ay).

Moreover we have the following relations similarly to [2, §1]:
aNa=0, aAf=-LANa, aA(f+y)=aAB+alAq,

aANBAY)+BA(YA)+TA(axAB) =0,
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P(aAB,a)=P(a,a AB) =0.
We have further

(2.9) aA(BAY)=b(a,B)y — P, 7)B,

(2‘10) ¢(a /\,3,‘)’ A ‘5) = ¢(a’ 6)¢(71ﬂ) - ¢(aa 7)¢(ﬂ)6),

a; a ag

(2.11) PaAB,y)=9(B,yAa)=—=2|b; by bs|.

ci €2 Cg

Now, the following proposition of duplication is implied immediately from
Proposition 2.1, by taking 2a,, as,2as, 2b;,bs, 2bs instead of p1,p2,P3,91,92, 93
respectively.

ProprosiTION 2.12. Let f be a binary quadratic form. Then except trivial
chsange of signs, the qudratic form f has an expression f = a A8 by a and

of Q3 if and only if
Pa,8(€1,€2) = f(z1,31) (22, 92),
where £, = [21,y1] [Ol] t[zz,yz] and {; = [21,1/1] [,3] t[zzyyz]-
Remark 2.13. We note that for any integral binary quadratic form f, there

are quadratic forms a and B such that f = a A 8. In fact, let f = [a,b,c] € Z3,
and let e = g.c.d.(a,c). Take r,s € Z so that ar 4+ cs = e. Then

where

a —cC bs br
2.1 = | = _— N R
O O P

' N/ Z o . ..
Note that 8 isin 7 DZ D 7 not necessarily in Z® in general, but p, g is integral

as follows

(216)  pasléns ) = (¢}~ Bro)éd + =(abr — bes)ata + 42561,
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Remark 2.17 Let 2 = 23 = 23 and y = y; = ¥ in Proposition 2.12. Then
&1 = oz, y) and €3 = B(=,v), and we have

B(B)a(z,y)? — 2¢(a, B)a(z, v)B(z, y) + ¥()B(z,y)> = (e A B)(=, y)*.

This is one of syzygy in classical invariant theory(Cf. [2, (1.5)]).

§3. Ternary form representation of duplication

We shall show that the quadratic form g, g obtained in Proposition 2.12
as a duplication of f is further transformed to a ternary quadratic form whose
expression does not contain a or 8.

At first, let f = a AB with «,3 € Z3. Let x = [, 23, 23] € Z3. Then (2.9)
implies f Ax = (a AB) Ax = —x A(a A B) = ¥(x,8)a — P(x,a)B, and (2.8)

implies

(3.1) Po,g(m,7m2) = P(f A X),

where 9, = 9(x, ) and 7, = ¥(x, ).

Note that the right hand side of the above formula is a ternary quadratic
form and determined by f withought using o or 8, which is explicitly given as
follows:

3.2) Y(fAX)=4(c?2? + acz? +a’z2 — bezyzy — abzazs + (b — 2ac)zi23).
1 2 3

We shall further transform it to another form as follows.

Let f = [a,b,c] and x = [z1, 23, z3] be as above. Then by (2.11) and (2.4),

a b c
— — T1 T2 T3
¢(fo)—¢(fo,fo)_ 2 a b 9 a c b c
1 g 1 23 T2 23
4 a ¢l R bilb ¢
- z1 23 £y Ty ||xy 23 ’
Set
0 0 -1/2
(3.3) T=| 0 1 0 |.
-1/2 0 0
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For any f = [a,b,c|, let

0 ¢ b
(3.4) f) = [—c 0 a ] .
b —a 0

Let further
(X1, X2, X3] = [21, 22, 23] T(F).

Then since ‘d)(f A x) = 4(X22 - X3X1) = 4[X1,X2,X3] Tt[.Xl,Xz,X;:,], we have
(3.5) B(f Ax) = & T(H) THE(F) .

Remark 3.6. It is well-known that & gives an isomorphism between the Lie
ring of the orthogonal group O(3) by means of the usual Lie product and the

Lie ring of R® by means of the vector product. If we define a product [4, B]r
for matrices A, B of degree 3 by

[A, Blr = ATB — BTA,
where T is as in (3.3), then we have

alAf

[A,B]T=T( 9 ))

where o and 3 are elements of Z* such that A = T(a) and B = T().

ay as/2

Remark 3.7. For any a = [a;,a;,a3] € Z3, let [a] = [ /2
ag ag

} as before.
If [a] = [B] mod SL;(Z), then we have

B T'EP) = )T *%() mod SLs(Z).

In fact, for [f] = ‘U[e] U by U = | * “2] € SLy(Z), let
ug Us
TLZ —2'lL3'LL4 ug
U1 = —UrU4 2u2u3 -+ 1 ——2u1u3 .
ul —2uiu, u?

Then U; € SL3(Z), and T(B)T*E(B) = UL %(a)T ' %)V
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§4. Correspondence between quadratic forms and ideals mod m

Let K = Q(V/d) be a quadratic field, where d is a square free rational integer,
and D be the discriminant of K. We call a rational integer D a discriminant
integer when D 1s a discriminant of some quadratic field, namely D satisfies
either one of the following conditions: (i) D is square free and D = 1 mod 4,
(i1) D = 4d, d is a square free and d % 1 mod 4.

Denote by N the absolute norm to the rational number field Q. Let

1+\/—5=1+\/z when d=1 mod4,

2 2
?:\/& when d#1 mod4

Then {l,w} forms a Z-basis of Ok, the ring of integers of K. Let a be a
fractional ideal of K. Then we can choose {ra,r(b+ w)} as a Z-basis of a ,
where » € Q; a,b € Z; and r > 0,a > 0. We denote it by a = »[a,b + w], and
the basis is called a canonical basis of a. It is uniquly determined by a, and
called the reduced canonical basis , when 0 < b < a. An integral ideal a is called
primitive if r = 1.

Denote by Ag the following sugroup of SL,(Z):

Aoz{[é ’;]; uez}.

For any rational integer m, denote by I'g(m) the following subgroup of SLy(Z):

To(m) = { [‘: Z] €SIy(Z);a=1c=0 modm}.

For a binary quadratic form f(z,y) and a square matrix U of degree 2 , the
form 17 is defined by 1V (2,9) = £([2,] ‘U) = [2,3] ‘VIf]U “[z, 3] as in (1.25),

and we have easily the following

Uy U ]

LEmMA 4.1. LetU = [ J
Ug Ug

be an integral matrix. Then

fU(laO) = f(ul,uS)a fU(O)l) = f(u23u4)-

If g.c.d (uy,us) = 1, then there is U in SLy(Z) such that f(uy,us) = fY(1,0).
If g.c.d (ug,us) = 1, then there is U in SL,(Z) such that f(u,,us) = f7(0,1).

For rational binary quadratic forms f; and f,, define

(4.2) fi=f, modTy(m) or modA,
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if f, = f by U € Tg(m) or by U € A respectively.

Let D be a discriminant integer, and m be any rational integer. We classify
the primitive integral binary quadratic forms of discriminant D mod I'q(m), and
call its class an equivalence class mod m of quadratic forms of discriminant D.

Any fractional ideal a is written by a = (r)ag, where » € Q and qg is
primitive. If »[a,b+ w] is a canonical basis of a, then

(4.3) Na = r%a.

Now we define mappings ® and ¥ between fractional ideals of K and rational
binary quadratic forms as follows:

For a fractional ideal a of K with a cannonial basis »[a,b + w], define & as
follows.

(4.4) &(r[a,b+w]) = EN(aa: + (b + w)y) = 7[a, b, ¢,

where b' = 2b+1 or = 2b according as d = 1 mod 4 or not, and D = (V')? — 4ac.
The last form determins an integer ¢ by N(b+w) = 0 mod a, since [a,b+w] is an
ideal basis. The image of ¢ of an ideal is depend on the choice of its canonical
basis, but is unique mod Ag.

Conversely let f = r[a,b,c|, where [a,b,c] is primitive . Then we define ¥

by

(4.5) T(f)=r [a, b +2‘/5] ,

where D = b?> — 4ac. The image of ¥ is a canonical basis of an ideal, since D is
a discriminant integer.

ProPOSITION 4.6. Let D be a discriminant integer. Then primitive binary
quadratic forms of discriminant D mod Ay and primitive ideals of the quadratic

field K = Q(v/D) correspond one another by & and ¥ inversely.

Proof. Let a = [a,b+ w| be a primitive integral ideal, and ®([a,b + w]) =
[a,b',c], where D = (b')>—4ac asin (4.4). Note that the class of ®([a, b+w]) mod
Ay is not depend on the choice of canonical basis of a. We have ¥([a,¥,c]) =

b ++/D 1++vD

a,—— | = |a,b+
2 2

or not. Hence ¥(®(a)) = [a,b + w] = a.
Conversely let f = [a,b,c] and D = b®> — 4ac. Then we have ¥(f) =
b+vD

2
mod 4 or not. Hence ®(¥(f)) = [a, b, ] = [a,b, c].

or = |a,b+ \/2——5 acording asd =1 mod4

a,

= [a,b; + w], where b; = (b—1)/2 or = b/2 according as D =1
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ProposiTION 4.7. Let ay,as be primitive ideals of a quadratic field K =
Q(+/d), and let [ay,by + w],[az,b2 + w] be their canonical basis respectively.
Suppose a; = Aay by A = (r + m(s + tw))/w, where 7,8,t,w € Z, NA > 0
and g.c.d.(w,m) = 1. Then thereis U = w1 uz] € SLy(Z) such that ruy =

Ug
w, ug = 0 mod m and

[al,bl + w]U = A[az,bz —l—w]

d—1
PTOOf. Let A1 = 8 — bzt, Az = asi 3 A3 = (T - bz)t or = bzt, and
Ay = s+t + byt or = s + byt according as d = 1 mod 4 or not. Then since

w2=w+d—1

or = d according as d = 1 mod 4 or not , we have wl[az,bs +

* + mAl mA3 .
mA, o+ mA.i] . On the other hand since

a; = Aagz and NA > 0, thereis U in SLy(Z) such that A[az,by+w] = [aq, by +w]U.
Hence [az b2 } V=w [al bl} U , which implies

w| = [az, by + w]V, where V = [

0 1 0 1
1 * %
(4.8) 129 -w[O 1}.
Let U = [:1 22] . Then mAzuys — (r + mAg)us = 0 and —mAyuy + (v +
3 Us ‘
mAy)u; = w. Hence we have ug = 0, ru; = w mod m, which proves the

proposition.

Define &'g(m) by

(4.9) G'g(m)={A); A€ K*;A=1 mod*m, NA > 0}.

THEOREM 4.10. Let K = Q(v/D) be a quadratic field of discriminant D
and m be any rational integer. Then the ideal classes mod G'%(m) of K and
the equivalence classes mod I'g(m) of primitive binary quadratic forms f(z,y)

of discriminant D such that f(1,0) is prime to m correspond by ® and ¥ one
another inversely.

Proof. In the same way as the case of m = 1, we can prove the theorem as
follows.

(1) Let a; and a; be primitive ideals of K prime to m, and suppose that
a; = azmod &Y% (m). Let a; = (A)a,, where A € &% (m). Let [a1,b; + w] and
[az,b2 + w] be canonical basis of a; and a, respectively. Then by Proposition
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4.7, there is U in I'g(m) such that [a1,b; + w]U = Afas,bs + w], and (4.4) and
(4.3) impliy

B(ay) = ;-I;N(alz + (b + w)y) = i—N([ah by + ] [z, 3])

- ZIIN([al,bl +w]U[=,9]) = Zl{l‘.‘(f\[az,bz +0]*[z,])

= N 8(a;) = 8(ay) mod To(m).
ai
(ii) Conversely let fi,f» be primitive quadratic forms of discriminant D,

and fi(2,y) = fo([2,9]'U) by U = [ 1 “2] € To(m). Let ¥(fy) = a; = -

mug Ug
[@1,b1 + w], ¥(f2) = a; = [a3,bs + w] in expression of canonical basis. Then
(4.4), (4.5) and Proposition 4.6 implies
(4.11) fi(z,y) = 2%(f1(=,9))

1 1.
= a—N(ala: + (b +w)y) = ;—N([al, by + w] [z, ¥]) mod. Ag.
1 1

By assumption and adjusting U by Ag if necessary, we have

(4.12) fi(z,9) = fo([=,9]'U) = al—zN([az,bz + w]U *[2,9])

1
= -a—N([ulaz + mug(bs + w), uzas + us(bs + w)] [z, y])-
2

Now let o be the non-trivial automorphism of K/Q. Then by (4.11) the roots of
by +w by +w?
fi(z,1) are —

ay ai
A of K such that

and — . Compaired with (4.12), there is an element

(4.13) { uray + mug(by + w) = a1,

u2ay + ua(by +w) = (b1 + w)A or = (b +w’)A.
However the latter of the second equality in (4.13) does not happen. Because
(4.12) implies
1 NA NA
fl(:c,y) = ;;N(alz\z+(b1+w”)/\y) = —;——N(a12+(b1+w”)y) - —;——alfl(z, y).
2 2

Hence

(4.14) NA= 250,

ai
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On the other hand, the second case of (4.13) implies

as by +w
(13] bz +w"

0,1)\ (bl + w")x\
ay\" (b1 + w)/\"

ay b]_ +w

= _NA aq b]_ + w?

Ul =

Then by a; > 0 and a; > 0, we have NA < 0, which contradict to (4.14).

Now let A = (s +tw)/r, where r,s,¢t € Z and g.c.d.(s,t) = 1. Then the first
of (4.13) implies az = a;8/7, a1t/ = 0 mod m. Hence ¢t = 0 mod m. Moreover
(4.14) implies ay = a; NX = a;5?/#* mod m. Hence s? = rs mod m. Thus s = »
mod m. Hence A = 1 mod m, and (4.13) implies [a,b; + w] U = Afag, b1 + w].
Since NA > 0 by (4.14), we have a; = a; mod &% (m).

§5. Class composition of quadratic forms mod m

In this section, let m be an integer such that m =0 mod 4 when m is even.
For a rational quadratic form f(z,y) = az? + bzy + cy? and a square matrix

U= ["‘1 ZZ],let 7FY(z,v) = #([z, 9] 'U) as in (1.25).

us

Let K = Q(v/D) be a quadratic field of discriminant D. In order to show
that the correspondence ® and ¥ defined in Section 2 give an isomorphism
between the class group of ideals mod &% (m) of K and the equivalence class
group mod I'g(m) of binary quadratic forms of discriminant D, we shall refer a
part of [1, Chapter 14] modifying by means of equivalence mod I'g(m).

Let us call an integral quadratic form f(z,y) represents an integer s
mod I'g(m), when there is a matrix U in T'g(m) such that s = fU(1,0). This
is equivalent that there are rational integers z,y such that z = 1 mod m,
g.c.d.(z,y) =1, and f(z,my) = s.

LemMma 5.1[1, Cuar.14, LEMMA 2.1]. Let f = [a,b,c] be a primitive
form and let M be any integer prime to m. Then there is an integer prime to
M which is represented by f mod I'g(m).

Proof. This is shown in the same way as in [1] by taking f(z, my) such that
z =1 mod m and g.c.d.(z,y) = 1 instead of f(z,y). Namely let p be a prime
dividing M. We consider three cases

(1) pta.if pf z and p |y then f(z, my) is prime to p.

(ii) p ¥ c. Similar.

(i) p|a,p|c,s0o ptb. Then ptz,pty ensures that f(z, my) is prime to

LemMaA 5.2 (1, CHAP.14, LEMMA 2.2]. Suppose that two primitive forms
with the same middle coefficient [a1,b,c1] and [as,b,c2] are equivalent mod
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To(m). Let ! be an integer such that l | ¢1,! | c; and g.c.d.(a1,as,l) = 1.
Then [la;,b,17 ¢;] and [las, b, 17 cy] are equivalent mod T'g(m).
This is proved in the same way as in [1] taking ¢ divisible by m.

Two primitive forms

T =[a,~,b,-,c,-] (i=1,2)

of discriminant D are called concordant or united if (i) ajas # 0, (ii) the two
middle coefficients are the same, say b; = b, = b and (iil) the form

( 53) f3 = [0,10.2, b) *]

of discriminant D is integral. Then f; is necessarily primitive. Moreover f3
coincides with a Gaussian composition of f; and f;, which will be shown later
in Proposition 3.10.

Let us call the above fs the concordant composition of f; and fs.

Remark 5.4. When g.c.d.(a1,a2) = 1, the condition (iii) follows from (i)
and (i1)([1, Chap.14, Note before Lemma 2.3]), and we have ¥(f,)¥(f;) = ¥(fs)
since [a1,b + w][az, b+ w] = [a1a2,b + w] when g.c.d.(a1,a;) = 1.

Remark 5.5. If b2 — 4a;¢; = b%* — 4a;c and b = b; mod 2a;, then for any
integer m we have

[a1, b1, c1] = [a1, b, ¢] modTg(m).

In fact, let U = [(1) i}, where b = by + 2a4t. Then
¢ a;  by/2 e b/2
v [b1/2 c1 ]U— [b/? c |’

LemMma 5.6 [1, CHaP.14, LEMMA 2.3]. Let C4,C,; be two classes
mod T'g(m) of primitive forms of discriminant D # 0. Then there are con-
cordant forms f; = [aj,b,*¥] € C;(j = 1,2). Further, they may be chosen so
that a1,a, are prime to one another and to any integer M given in advance.

Proof. This is proved by slight modification of the proof of [1] as follows.
By Lemma 5.1 , the class C; represents some integer a; prime to M and C,
represents some integer a, prime to a; M. Hence there are forms

[ajvbj’*]eci (j:1a2)°
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Let b be an integer such that
bEbj mod2a,~ (j:1,2),

whose existence follows from that a; and a; are prime to one another and

b? =D modd4a;. Let U; = [(1) tl] € Io(m), where b = b; + 2a;t;. Then by

Remark 5.5, integers c; are determined by

i "= [k )

j
Now f; = [a;,b,c}] is to be required.

LemMa 5.7 [1, CHar.14, LEmMMa 2.4]. Let C;,C; be two classes
mod T'g(m) of primitive forms of discriminant D # 0. Then there is a class
C such that the concordant composition of f; € C;(j = 1,2) always lies in C.

This is proved in the same way as in [1] by taking the equivalence mod
I'o(m) for the equivalence ~.

Now, we can define a product of two classes mod m of quadratic forms
by the concordant composition of representatives of the classes. The following
theorem is implied from Theorem 4.10 and Remark 5.4.

TueorREM 5.8. Let K = Q(vD) be a quadratic field of discriminant D.
Then ® and ¥ give an isomorphism between the group of ideal classes of K

mod G (m) and the group of equivalent classes mod I'g(m) of binary quadratic
forms of discriminant D.

For a primitive quadratic form f, denote by C,,,(f) the class of f mod I'g(m).
We call a form f3 a composition of two primitive forms f; and f, mod m, when
Cm(f3) = Cr(f1)Com(f2), in other words, there are U; € T'g(m) (i = 1,2, 3) such

that f& and f.f * are concordant and fgj * is a concordant composition of fi*

and f,°.

ProrosiTioN 5.9. Let f; = [a1,b1,c1] and f; = [a3,bs,c2] be two primi-
tive forms of discriminant D. Suppose that g.c.d.(a1,a2) = 1, and let uy, uy €Z
such that aju; + aguy = 1. Let b = ayuiby + agusbs, & = (b — D)/(4a,a;) and
fs = [@1a3,b,&]. Then f3 is a composition of f; and f, mod m for any integer
m. Let t1 - (b2 - bl)u1/2,t2 = (b1 -—bz)‘uz/z Then E = bl + 2a1t1 = bz + 2a2t2.

Proof. Tt is easy to see b = by + 2a1t; = by + 2a5t5. Let V; = [3 tll } , Vo =

[(1) tlz], and let f; = fY* and f, = f¥2. Then the forms f; and f, are
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concordant forms with the middle coeficient b, and we have the proposition by
definition of concordant composition.

ProposiTION 5.10. Let f; = [ay,b,c1] and fo = [a2,b,c2] be concor-
dant primitive forms of discriminant D such that g.c.d.(a;,az) = 1. Let f3 =
[@1a2,b, %] be the the concordant composition of f; and f,. Take ui,us € Z so
that ayu; + asuy = 1, and let w = cyuy + cau;. Then fg coincides with the
Gaussian composition obtained from [p] = [1,0,0, —w] and [g] = [0, a1, a3, b].

Proof. In order to obtain the Gaussian composition, we apply Proposition
1.24. Since b; = b, = b in the present case, the matrix S in Proposition 1.24 is
as follows.

0 ay a9 b

_ —aq 0 0 Co

S - —ay 0 0 Ci

‘ -b —Cy —C3 0
Let [r] = [-1,0,0,0]. Then since Si[r] = *[0,a;,a2,b] , we can take [g] =
[0,a1,as,b] and [s] = [0,u1,uz,0] in Proposition 1.24. Moreover since S*[s] =
Hlarwi+azus, 0,0—cau; —cyup], we have [p] = [1,0,0,—w], A = —|Q| = a1a2, B =
|P1| + |Q1] = b, and C = —|P| = w. Hence Proposition 1.24 implies f3 =

[4, B, C], the Gaussian composition of f; and f; obtained from [p] and [g].

A Gaussian composition obtained in Proposition 1.1 is a representative of
the composition of the unimodular equivalence class but not necesarily of the
class mod m in the case m > 1. Now by Proposition 1.26, the proof of Propo-

sition 5.9 and Proposition 5.10, we have a Gaussian composition of equivalence
classes mod m as follows.

THEOREM 5.11. Let f; = [a1,b1,c1] and fo = [aa, b2, c2] be two primitive
forms of discriminant D such that g.c.d.(a;,a;) = 1. Take uy,u; € Z so that
a1u1+azuy =1, and let t; = (by—by)u1/2,t3 = (b1—bs)uz/2 and w = cyus+cous.

Let further
1oy 14
.‘[1 - {0 1 ]) VZ - [0 1 })

1 0 - _ 0 -
]Vlla Q:tvzl[ al‘)l}vz 1’

0 —w as

P="v" [

and F be the Gaussian composition of f; and f; by P and Q. Then F is a

concordant composition, and hence a composition mod m for any m:

Crn(F) = Con (f1)Cr(f2)-

Moreover, let P; and (), be obtained from P and ) as in Proposition 1.1. Then
F is given by F = [A, B,C|, where A = —|Q| = aja;, B = |Pi| + |Q1], and
C =—|P|=w.
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§6. Duplication mod m

Let m be an integer, and f = [a,b, c| be an integral binary quadratic form
such that g.c.d.(a, m) = 1. Denote by Cp,,(f) the class of f mod m. The purpose
of this section is to comstruct a duplication F of f mod m, i.e., a form F such
that

(6.1) Con(f)* = Cm(F)

for a given form f = [a,b,¢] .

Remark 6.2. A duplication obtained from Proposition 2.12 is a representa-
tive of the duplication of the unimodular equivalence class but not necesarily of
the class mod m in the case m > 1.

Now in order to have a duplication of f mod m, we choose a form f; = fU* =
[a1,b1,c1] such that U; € I'g(m) and g.c.d.(a,a;) = 1. Then a duplication of f
mod m is obtained by definition as a concordant composition of f and f;.

Lemma 6.3. Let f = [a,b,c] be a primitive form, and suppose that
Uy U2

g.c.d.(a,m) = 1. Let f]_ = fUl = [al,bl,cll by Ul = [m ‘ll.4] € Po(m)
Then

(6.4) a; = f(u1,m) = au? + buym + cm?.

and there is u; such that g.c.d.(a;,am) = 1.

Proof. The formula (6.4) is followed from Lemma 4.limmediately. We can
choose u; for instance as follows. Let a = agh, where g.c.d.(ag,c) = 1 and
prime divisors of A and c coincide. Let u; = a§ = 1 mod m by some integer
e. Then g.c.d.(a;,m) = 1. Moreover g.c.d.(a;,a) = 1. In fact, if p | h, then
ple,ptu,ptmand ptbowing to primitivity of f. Hence p { a1. If p | ao,
then p| vy, pt m and p { c. Hence p t a;.

Let f = [a,b,c] be as above a primitive form of discriminant D, and
g.cd.(a,m) = 1. Let f; = [a1,b;,c1] be a form obtained as in Lemma 6.3.
Choose », s € Z so that ar + a5 = 1, and let

(65) B = O.T'b]_ + alsb.
Let

(6.6) to=(by —b)r/2, t1=(b—b1)s/2
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®) w5 =l 5]
and
(6.8) | ]FO — fVo, le — f1V1 — fUlV].

Then since b = b + 2atg = by + 2a1t;, the forms fu and f; are concordant, i.e.,
fo = [a,b,&0] and fi = [a1,b,&1], where & = (b% — D)/4a, & =_(l_)2 — D)/4a;.
Let F = [aay,b,& be the concordant composition of fo and f;, where & =
(b® — D)/4aa;. Then F satisfies (6.1), and we have

THEOREM 6.9. Let f = [a,b,c] be an integral quadratic form of discrim-
inant D, and F = [aa;,b,& be an integral quadratic form determined by the
following data:

a; = au? + bmu; + cm?, where u; is an integer such that uy =1 mod m
and g.c.d.(uy,c) = 1.
b=arb, + a1sb, where b2 = D mod 4a,, ar + a15 = 1
¢ = (b2 — D)/(4aa,).
Then F is a duplication of f mod m, i.e., Cpp(F) = Cpr(f)?.
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