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Abstract. The relations between Galois groups of central extensions and those of
everywhere locally abelian central extensions are studied.

Introduction

Let M/K/k be a tower of Galois extensions of algebraic number fields of finite degree.
Denote by M, the maximal abelian extension over k contained in M. Let K*=KM,, which
is called the genus field for M/K/k. We call L a central extension of K/k in M when L is
Galois extension over k contained in M and Gal(L/K) is contained in the center of Gal(L/
K). We call L an EL-abelian central extension of K/k in M when L is a central extension
of K/k in M and each local completion of L is contained in the composite of the local
completion of K and an abelian extension of the corresponding local completion of k.
Denote by K resp. K or by Ky resp. Ky the maximal central extension resp. the
maximal EL-abelian central extension of K/k in M. There are several papers? concerning
with Galois groups of K or K over k and over K*. However the relations between Galois
groups of K and K are not written explicitly?. So we shall treat it in the present paper
(Theorem 6), which is rather expository. Especially the first half part is well-known, but
we repeat it with some changes of arrangement for the sake of convenience.

1. Throughout this paper, we use the following notation for an algebraic number field F
and Galois extension L/F.

Fae Maximal abelian extension of F
Fe! Maximal Galois extension which is exerywhere locally abelian
Fp Local completion of F at a prime p

1) See for instance the reference at the end of this paper.
2) Cf. Heider [ 5] , which partly concerns with the relation.
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Je Idele group of F
B Multiplicative group of non-zero elements of F,which coincides with the
group of principal ideles of F.
Cr=J§/F* Idele class proup of F
G(L/F) Galois group of L/F
Dr Kernel of the norm residue map Jr — G(F?*/F)
Nyr Norm map of L to F
H(L/F)=F*N_zJ. Kernel of the norm residue map Jr—G(LNF?/F), that is the idele
group corresponding to L by class field theory
C(L/F)=H(L/F)/F* Idele class group of F corresponding to L by class field theory

2. M/K/k, K*, K and K being as in Introduction, we add the following notation

T =Tk Group of ideles a of Jx such that Ny, a=1
Je=Ten Group generated by all ideles ' ¢, where a€Jx and o= G(K/k)
Je=] Z;k Group of ideles @ of Jx such that Nk, a€ k*

Let p be a prime of k and P a prime of K lying over p.
We start our discussion from the case M =K?".

ProrosiTION 1. Let M=K?°. Then
(1) HE*/K)= J;DK = N};,lk(Dk)
(2) HK/K)=J;Dx

(3) H(K/K)=J;Dx

Proof. (1) and (2) follow immediately from class field theory. We have also H(k®'KN
K*/K)=II Ny, (1) - Dx.
P
Put Ge=G(Ks/k,). Then since H"'(G, J)=3, H-'(Gs, K»), we have Ji =Jg II N\ (D).
P P

Hence? HR/K)=H(k*KNK**/K). HK/K)=II N}, (1) Dx - J; - Du=Ji - Dx.
P

For a general case of M, replacing Dx by H(M/K)=K* Ny,«Ju, we have the following
PROPOSITION 2
1) HEK/K)=J; HM/K)

@) HERwK)=J; HM/K)

3) Cf. Masuda [ 8] and Miyake [ 9]
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(3) HEwWK)=J; HM/K)

3. A commutative diagram

0 0 0

M ]M
0— K* - HMWMK) - CM/K) —0

Vo s ) l /1
1 J
0-’ KX i ]K i CK —>0
! ! Ip
0 — Jg/HM/K) — JJHM/K) -0
! !
0 0

implies the following commutative diagram (#) of long exact sequences of cohomology
groups, where H¥(A) stands for H(G(K/k), A).

i

i# jﬁ b4
e HE) M HA MK H (HM/K)/K) ey H (K*)— H (H(M/K))—>-

#) I o U I
SoHUEKOS B0 AL B0 0L pry) — HO0 —

N
H~'(Jx/H(M/K))
| o
H*(H(M/K)/K*)
}

4, Let ® be a finite group and © be a normal subgroup of ®. Let A be a ®-module and
N be an endomorphism of A defined by Nga= 2, ¢a. Put Oy(A)=Ker Ny and let N be
the homomorphism of H™ (&, A) to H"Y(®/9, Ifli,}bﬁ) induced from Ng. Denote by I the
augmentation ideal of the group ring Z©.

ProposiTiON 3 ( [3, Proposition 6]). Nofation being as above, we have the exact sequence

H(9, A)—»H'O, A)—H(B/9, NpyA)—0
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ProprosiTioN® 4. Let M/K/k be a tower of Galois extension with Galois group &=GM/
k), 9=GM/K) and G=GEK/k). Then

1*NyxH1(®, Cy)=Defs.cH"(®, Cy),

where A% is defined in the exact sequence (#) in Section 3.
Proof. By definition of Defy.s, we have
Defy-cH™(®, Cu)=Defs-c (Os(Cu)/IsCur) =

N, Ou(Cu)/15Cy = O(sa/a,a(N@CM)/I@/@CM =1 aN@ H 1S, Cy).

5. Now we can prove the following theorem by Proposition 2 and the exact sequence (#)
of cohomology groups.

THEOREM 5. Let M/K/k be a tower of Galois extensions of finite degree with Galois
groups E=GM/k) and G=GEK/k). Then we have

@ GERw/Ky)

1N

H-YG, Cy)/A*H (G, C(M/K))
= H G, Cg)/Defs.cH (S, Cy)
= H (G, Z)/Defs.cH*(®, Z)

(5) G(KM/K&) = (kx ﬂNK/k JK)/NK/k K- (kx mNM/kJM)

I

o*H™ NG, Cy)/a*A*H (G, C(M/K))

I

¢*H™N(G, Cy)/6* Defs-cH™'(®, Cu)

1K

¢*H2(G, Z)/6* Def@ﬂGH“a(@, Z)

®  GKw/Kw)

I

T/ TxUx NHM/K))
H™Y(G, Ju)/»*H™1(G, HM/K))

I

Proof of (4). The exact sequence (#) implies HY(G, Cx)/A*H G, C(M/K))=Im pt=
Ker 5~ HOGK) - HOM/K)/HM/K)
Jz - HM/K)/H(M/K)
On the other hand, it follows from Proposition 3 and Proposition 4 that
H 4G, Cx)/A*H-YG, CM/K))=
H~Y(G, Cx)/A*NyxH 4G, Cy)=H"4(G, Cx)/Defc.cH(G, Cv)

= HEK/K/HEWK) = GRu/Ky).

4) Cf. Shirai [15] and Kuz'min [ 7, p.1152~ ]
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Proof of (5). We have H(K;I/K): laeJx ; NywaeH(M/k)=k*Ny, Ju} by translation
theorem of class field theory. Hence Proposition 2 implies
G(Rwu/Ky) = HEK/K)/Jx HM/K)
= Ny HK/K)/Ngi HM/K)
= (K* Ny Jm N NinJ )/ Nign K+ NaweJ
= (k¥ N NguJ /(& N NigneJ ) N N K+ NagaeJna)
= (& N NgnJw)/NgnK* = (&N NagieJ ).

{

It is well known that k* N NguJx/NxwK*=Ker i*=Im ¢%, and also (k* N NuuJu) « NgnK*/
N K = (k* N N (K* + NageJm))/ N K =Ker ifv[:lm 6i4:Im (6%, A7),

Proof of (6). By Proposition 2, (2') and (3'), we have

GRw/Ry) = T - K* - Nugu/ T - K - NuJ
= Ji/Ti N - KX+ NygeJw)
= Ji/TeUx NK* - Ny w)
= (i/I/0% - Ui NHM/K)/TR)
= H™\(G, Jo)/x*H"Y(G, HM/K)).

Remark. (i) The formula (4) of Theorem 5 is obtained® immediately, if we use
Hochschild-Serre exact sequence.

(ii) If M is sufficiently large, we have® Dg..H™*(®, Z)=0. Hence Theorem 5 implies

GRw/KH=H3G, Z) and” GRw/Ky)=0¢*H 3G, Z)=(k* N NguJx)/Ngi K, which is called
number knot.

THEOREM 6. We have the following exact sequence.

0—— G(Ry/Ky) — G(Rw/K}) - G(Ru/K) ——0
1l 1] gl

0 HUG J) . H'GGC) % eH'GCY
»"H~YG, HM/K)) A*HHG, C(M/K)) S*A*HYG, C(M/K))

§ Il Sl

5) See Heider [4, §2]
6) See Heider [4, §4] , Miyake [ 9] and Yamashita [16] .
7) See Masuda [ 8, Theorem 8] and Heider [5, Satz 7] .
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H- (G, Cx) o*H(G, Cx)
Defs-cH™(®, Cu) Defg-cd*H™(®, Cu)
il § 1l
H3(G, Z) o"H¥(G, Z)
Defy.cH™3(®, Z) Defy.cd"H™3(®, Z)

where j* and §* arve induced from i and &* is as in diagram (#) in 3.

Proof. The theorem follows immediately from Theorem 5 and the following equal-

ities.

#H UG, TN AH (G, CM/K)=Ker 6*NIm A* = A#Ker o%)= 1%, H-1(G, HM/K))

:j#}(

(1]
(2]

(3]
(4]
(5]
6]
(7]
(8]
(9]

(10]

[11]
[12]

[13]
(14]
(15]

(16]

HY(G, HM/K)) and Ker j*=Im i" = Im(x?*, iiA)Ex#H“‘(G, HM/K)).
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