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Abstruct. In this paper we shall consider the limit set of the Kleinian group with

parabolic elements and prove that the Hausdorff dimension of the limit set of this

group is greater than % A.F.Beardon showed in (3] the existance of a finitely

generated Fuchsian group G of the second kind whose Hausdorff dimension d(G) is
greater than —-ZL He also proved in (4] that d(G) >% for a Fuchsian group of the
second kind with parabolic elements. Hence to extend this inequality for Kleinian
groups with parabolic elements is significant.

1. Let I" be a group of linear transformations

St 2Bl (4 _pe=1),
cz+d
on the complex sphere CZC U {0} . A point z, is called a limit point of I" if there is
a sequence {S,} consisting of distinct elements of I" such that ’}1_{1;10 S.(z)=2z, for some
ze C. The set of limit points will be called the limit set of I" denoted by A("). A(T) is a
nowhere dense and perfect set, and invariant under I". We shall denote its comple-
mentary set by Q(I") and call it the set of discontinuity. If Q(I") is not empty, it is said
that I is discontinuous and further, if A(I") contains more than two points, I" is said a
Kleinian group.
For a linear transformation of the form

S(z) = az+b

, ad—bc=1, c¢+0,
cz+d

the circle I(S)= {z]| | cz+d| =1} is called the isometric circle of the transformation

S. The radius of I(S) is equal to '—Cl—|

2. Let us give some properties of a linear transformation.
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Lemmal. Let P= (; §>’ a8—By=1, (a+6=2) be a parabolic element. Then it

holds for any integer n(+0)

n_ (na—(n—1) ng
o pr= <n7 nb*—(n—l)).
Proof. We can prove easily for ==1 by induction. Further, since
(P)'= <n 6= (=1 R ) and o+ 6 =2, we have (P '=P". q.ed.
—ny na—(n—1)

Lemma2. Let C be a circle of vadius v with center at the point z, in C. Let
S(z)=(az +b)/(cz+d), (ad—bc=1) by any linear transformation. If S~'(co0)= —% s not
on C, the vadius v(C’) of the image C’ of C by S is equal to ' 61,2 | pzi’rz i where o
denotes the distance | S™'(c0)—2z, | .

Proof. 1If S‘l(oo):—% lies in the outside of C, set g=arg {(z—2z,)/(S7*(o0)—2,)} .
Then we have

N 1 dS(z)
@ = z,rfcl 2z

-1
(el F=r

1 2 ng
dz| = f
| 27 c|2Jy pP—2p7cos B+ 7?

If S7Y(o0)= —% lies in the inside of C, we have the equality

, 1
HC') = |C,2—721p2

by the same manner stated above. g.e.d.
As to the location of isometric circles, we know the following facts. If /(U) and
I(V~') are exterior to each other, then I(UV) is contained in I(V) (U= V™). If Pis a
parabolic element, I(P) and I(P~') are tangent externally.
Now let us prove the following lemma.

Lemma3. Let T" be a Kleinian group with parabolic elements. Then theve exists a
subgroup G of T" which satisfies the following two conditions : (i) P and T are parabolic and
loxodromic transformations, wherve any pair of four civcles 1(P), I(P~Y), I(T), I(T™*) are
external to one another except the case that I(P) and I(P~') are tangent externally. (ii) G is
a free group generated by P and T.

Proof. Since T" is a Kleinian group with parabolic elements, then we may assume no
loss of generality that I" has a parabolic element P where P(oco)+#o0o. For if P,(c0)=00,
we may take P= VP, V™! where V is a loxodromic element in I". Further, T" has a
loxodromic element W such that W(eo)#oco. Let &, & be fixed points and x» be a
multiplier of W, respectively, where »#1. Then, it holds
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wnr = ; 1 <K"$z—§1 (1- K")$1&>
(6 — &) =1 GH—x"4
Let »(W™) be a radius of /(W?"). Then we have
@ =87
| xz— x7z |

From (1) of lemma 1, we can easily find for the radius »(P”) of I(P") that
o 1
4) 7P = ——r
| 7 7|
Since both radii of »(W7") and »(P") tend to 0 for n—o0, we can select four circles with
above condition (i). q.e.d.

3. From now we shall consider the subgroup G of I generated by P and 7" appeared
in Lemma 3. Further let us consider the subgroup G of G generated by P’TP~7 (7=0,
+1, 2, ..). Put PPTP =T, (ieZ), P°=F and T,=7T, where E is the identity. Now
let us denote by D(T%) the closed disc bounded by PYI(T*) ) (i€Z), where ¢e==+1 and
further denote by B and B’ the exterior of four discsgkz/i1 {D(P*), D(T9} and

; _@; ~ D(T3), respectively. Then B and B’ are the fundamental domains of G and

G, respectively.
Next we shall give the following important lemma.

Lemmad. Let G and G’ be the Kleinian groups defined in the above. Then there are
two relations between G and G as jollows: (1) G’ is a normal subgroup of G and the
quotient group G/G’ s a cyclic group < P> genevated by P. (ii) A(G)=A(G").

Proof of (i). Let g be any element of G. Then we can choose adequately neZ and
g’eG’ satisfying g=Pn"g’. Considering the automorphisms P,: g'—P"g’P~" for each
g’eG’, we have gG’'g7'C G’ (geG). Replacing g by g ! we obtain gG’'g7! DG (g€G). q.e.d.

Proof of (ii). Denote by Y the set of generators of G and their inverses { £, P!, T,
T-'} . Any element S(+ E) of G has the form

S=PYT" v P2T™2PUT™ ([, €2).

Set n= ZZJ:l(I ;| + | m;|). S is called an element of grade n of G and sometimes
denote it by S=S,. If S V1=Su 1, D(Stn)=Sm(D(U) ) is called a closed disc of
grade # of G where UeY — |V} . In other words, D(S(,) is a closed disc bounded by
the inner boundary circle of S(,(B). Since it is obvious that A(G")C A(G), it is sufficient

only to prove A(G)C A(G’). It is known ?30 S(u) D(S»)=A(G). Let z, be any point of

A(G). Then we can take a sequence of distinct elements {A,} in G for a sequence of
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neighbourhoods U(z,; en)= {2] | 2—20 | <enl (e,—0) of 2z, such that A (B)C U(z, ;en).
We have proved in (i) A,T°A;(e==*1) belongs to G’ where T is a generator of G'.

There are fixed points z,, z,, of A,TA* in U(z,; ,). This concludes the existance of
a sequence {z,} in A(G’) such thatJLn}o Zn=2,. Therefore z,eA(G). g.ed.

4. Take a point z, in B and construct a closed disc D.z,) of radius » with the
center z, such that D(z,)C B. Then we have the following lemma.

Lemma 5. Let 7, be the radius of the image of D z,) by P* (n+0). Then there exist
comstants ¢, and c, depending only on B and v such that it holds

) 0<%cl§rn§

5 Ca.

Proof. Because of P‘”(00)=P“(00)+"T_1 o % from Lemma 1, we have
| P =z | —por S | Pr(e)—zy | 5 | PHeo)—z1 |+
for n>0. Therefore we have from Lemma 2 the following inequality
) r <7, = r .
[ my P{(| P~ Ho0) = 21| +[y|71)—7?} [y P{(| P~ (e0)—z.| —| y |72 =72}
In the similar manner, we can also prove for # <0 the following inequality

(6) A n r

IA
IA

| my P{(] P(oo)—zi|+]y 1) —7?} | ny 2 {(|P(0) =2 [—] y [P =r?}
1 we put € = i o e A T
= % l77/|2 e ‘1* ST— in (6), we have (5). In the case of 7 <0,
we may put ¢, = Zzezg | ;!2 (0 P(oo)—zl)i DI and
cr=max 7 CRe 1 — e ) aed

By the same manner as Lemma 5, taking the closed disc D(7T%) (e==1) in place of
D,(z,), we can find the constants ¢,’, ¢, depnding only on B for the radius #(D(Ty)) of

D(Ty) such that the following inequality

1

M 0< *]\}—c < 1DTF)) <Fe,

holds for NeZ — {0} and e==*1.

5. Let T:(j 3

Denote by D. and R. be the closed disc {z]|| z— T (o) | <#(D(T)) +26} and the ring
domain {z| #(D(T) ) < | 2—T%)| <7(D(T) ) +268} , respectively, where e==+1 and
>0 is taken such that D_,n D, = ¢ and R.C B. Then we obtain from Lemma 2,

>, (ad — bc=1) be a loxodromic transformation defined in Lemma 3.
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e . r(D(T)H+26 1
AIDe)) = R | T%(0)—2,[2—(»(D(T))+2 6

where D¢ is the complementary set of D. and z, is the center of I(7¢). Since the
radius 7(D(T ~¢)) of the isometric circle I(7T %) is 1/ | ¢| and T¢(c0)=z,, we have
r*(D(T))
r(D(T))+26

Let Dy(z") denote the inscribed disc of radius § with center z” in R.. Then we have
also from Lemma 2

’ (Ezil)

® ATDz)) = ;o (e==D).

e , _ 0 1 .
r(T*(Ds(z"))) = 7 [T o)z '—& (see Fig. 1)

for the radius #(7°(Ds(z")) ) of the image of Ds(z’) by T¢ (¢ ==+1). Hence from the
relation | 77 ¢(00)—2’| =#(D(T)) +6 we have the following equality :
o 7r(D(T))
r(D(T))+26

It is easily seen from the right hand side of (9) that »(7%(Ds(z") )) is independent of
the location of the center of Dgz’). Therefore we find from (8) and (9) that the two
ctosed discs T9(D<:) and D, are concentric and hence it holds,

r*(D(T))

r(D(T)+26

Now let us denote by R the ring domain bounded by two circles with radii
r2 (D)) /(»(D(T) ) +26) and »(D(T) ), that is,

rz(D(T)) —
S DM)aze =12 T )| =#(D(T)) }

(see Fig. 1). Then we have the following lemma.

@ (T (Ds(2))) =

10) THDZ) C {z] [ 2=Teo) | = b (e==%1).

1) R = {z]

Lemma 6. Let D be the closed disc inscribed in R<. Then theve exist positive
constants c¢s and c, depending only on B such that it holds

b o rPD) 4 .
12 0< e < o™ < e <L (=%D

Jor the vadii v(P*(D) ) and v(P*(D(T*)) ) of the image of D and D(T*) by P* (k€Z), where

P= (5 g) , (a6—py=1) is the parabolic element defined in Lemma 3. (see Fig. 1)

Proof. Taking the large number d, we may assume that
D(P?®) v D(T¢) C {_z] | z| <d} (e==£1).

Then we have also from Lemma 2

ay _PD) D) | PR = D(T) = HD(T)
7(PHD(T)  7(D(T) | PHeo)—aD) | *— r(D)

I
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I(P)

Fig. 1.

(D) (r(DM)+26¢—r*(D(T) _ . ¢
7(D(T)) (2d)>—r*(D) P

where o(D(T¢)) and o{ D) denote the centers of D(7T¢) and D, respectively.
If weput ¢ =min { | z2,—2z, | | 2,el(P¢), z,el(T*¢), e==+1} , we obtain from (13)

(14) 7(P*(D)) - r(D) (2d)—r*(D(T))
r(PHD(T) ~— r(D(T) (£ +7(D)y—r4D)
We obtain easily from (8)
_ 1 ___*D(T)) 5o r(D(TY)
1) D) =5 \rDD) =555 = 7 D(D)+26
If we substitute (15) into the right hand side of (14), we have
(16) 7 (P*(D)) - 5 2d)—r*(D(1)) -
r(PHD(T) ~— r(D(T)H+26 (¢ +7(D)*—r*D) )

Since {@2d)?—r*(D(T) )} / {(¢ +7(D) )*—r*(D)} is a constant, we can choose a small
& such that it holds ¢, <1. q.ed.

Let us denote by Yy’ the set‘ i|u<N {T., T/} (T;=P*TP~%. Then we shall get Y’
from Y}, as No>+oo. Let Spy="T o Tt owreeo TS (THY, iseZ, &==%1) be any
element of G'. Then S(D(T)%)) is contained in the inside of the closed disc
S<n>(D(Tf11) ) and Sqi(0) € D(T3Y) (7 +#iy).

Now let us give the following lemma.

Lemma 7. Forany T (+ T3) e Y, there exists a constant M depending only on B
such that

(A7) | Sea(e0)=aoD(TS)) | <M| PH(T*(e0) ) —PAT~%%(e0) ) |,
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where Siy=T" o+ o Ti} is an element of G' and oD(T;’)) denotes the center of a
closed disc D(T}) (e;=%x1, 1=j<k).

Proof. Put ¢ =inf {d(z,, 2,) | 2,eD(T}9), 2:eD(T:))} . Since Sih(eo) (€D(TY) ), P
(T~ %1(c0) ) and P?(T ™% (o0)) are not contained in the ring domains, that is, the images
of R¢ (e==*1) by P and P/, respectively, we have the following inequalities

(18) | Six)=oD(T) ) | < ¢ +2 {(r(D(T77)) +7r(D(T3H) )} — {r(P(D))
+7(PD)) |

and

(19) | PYT ™ oo) ) —PHT " %o0)) | = ¢ + {r(PU(D)) +7(P(D)) } .
Using Lemma 6 we obtain from (18) and (19)

(20) | Sgi()=aD(T)) | < ¢ +@2—c3) {r(D(T]5)) +7(D(T3)) |
and

(21) | P(T 4(00) )= PUT %% () | = ¢ +¢s {#(D(T5)) +7r(D(TH)}

where ¢; (<1) is a positive constant in Lemma 6.
Hence we have from (20) and (21)

LS DITPN | 2-cs _py - (see Fig. )
| PHT ™ 4(00)) = P(T ™ %(0)) | ’

D(T) R, D(T™)
R
oA D(TZ)))

P(R))

P~(T(0)) oAD(T))

P(T7(e0))

Fig. 2.
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6. Considering the suitable conjugate group of G and using Lemma 1, we can take

without loss of generality P = (%, (1)> such that min { | Y T )|, | ¥ T
(c0) | } >2.
Now we shall give the following theorem by using the above lemmas.

Theorem 1. Assume that 0 = # =1. Then therve exisis a sufficiently large integer N
(> 0) such that

22 = {7(S(D (T W22 {7(Sem(D (TN} 2,

| 7] €EN,e= *1
where Sim= T o-wwn o Tilis an element of Gy and ¢; = +1 (1<j<n).

Proof. By using Lemma 2 and (17) of Lemma 7, it is easily seen for any » (>0) and
S(n)e G’ that

3 {ASaDTH
| 7] EN,e= %1
r(D(T))RS,

B = 2o U TSme—an@ s =@y )
) HD(T3)
&= SR ; —_— . —_ ’
= ngzv “3 S | PYT ™ (o0))—PX(T "% (c0) |

where Rs( ) is the radius of I(S(,»)and ¢;= M~*is a constant depending only on B and
e
We obtained from (7) for the estimate of »(D(T%)) in (23) that

(24) 0< ﬁ o < r(D(T3)< —Ijl—,z— ¢ (e = £1).
Now let us give the estimation of the denominator of the right hand side in (23). Since
P* has the form < 10 >, we have
ky 1

| Pil(T_el(oo))—Pj(T_ef(oo)) | :l T~ “1(o0) _ T~ ¢i(o0)

yi(T- @)1 7i(T He)+1
| 7 T~4e0) T~%(e0) (= i)+ T~4o0) = T~5(c0) |
[7in T o)1 | 77T o) 11

| yT —21(00) T7%(00) G —71)|+[ T }(o0)— T ~%i(e0) |
[T ™5 (o)l =14 ™) (1y T7(e0) | — [ 7171

25) =

If we consider only the terms of &;= +1 and ¢;= +1 in (25) and note the assumption
| YT (0)| >2, (¢ = *+1) we obtain from (25)

o | J—1, |”

Lau 171
where ¢, is a constant depending only on B and u. If we substitute the estimates (24)
and (26) into the right hand side of (23), we have

26) | P(T “i(c0)) — P(T %) | “<
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@7 = {7 SewD(TIM 2 = ¢,R§ 3 A ”(Tfl‘qt 79,
|jIS N, e==%1 M jisNl 21—
In particular, if Tfllz T¢, we obtain by the analogous method
7y 3 (FSw(DTIN 2 = e/RE, 3 |L*, (1i= T19.
[FISN, e==+1 Pijl=sN|T

Next we shall give the estimate of the right hand side of (22). If we see also
Lemma 2, we obtain

7(D( Tfll ))RSZ(H)
r*2(D(T))— | S(ni(oo)—a(D(Tfi)) |2
Since Sqy(0) (€ D(TZ‘)) is not contained in the ring domain, that is, the image of F¢
by P, we have from Lemma 6

Rsz(n)
7(D(T?)))

28) 7(Sim(D(T) =

< H(Se(D(T5)
r(D(TS) RE

r(D(TH)— Ar(D(T2)—csr(D(Ti))}?
RSZ(n)
r(D(Tecs@—cs)

(29)

(0 < e < 1)
Hence we obtain from (7)
(30) cs |7y |” Rg(n) Sr(Sim(D(THY? < ¢ | 4, |“Rs (Tii+ T,

Where ¢s, ¢, are the constants depending only on B and .. In paticular, if T?}z T,
we obtain by the analogous method

GO oy R < H(SalDTDP* < e/ RE , (Ti= T

where ¢yg’, ¢o” are the constants depending only on B and n. Therefore we have from (27)
and (30) (or (27)" and (30)') the following estimation :
2 {7(Seo(D(THN /2

|j|§N,e=il > 7 1 Til Te
61 F Som(DTN72 200 2 e Tar D

(r 2 ¢/ 3 ——(Tii= T9).
iisn | 71"

where c¢;4(c1o’) is a constant depending only on B and n. If we take a large number NV,
the right hand side of (31) is greater than 1 from the the divergence of the Dirichlet
series for 0 < ; < 1. Thus we can prove the theorem. q.e.d.

7. Now denote by Gy a Schottky group appeared in Theorem 1 and by By the

exterior of closed discs KfuN U D(T%). Then By is a fundametal domain of Gy . Let
JISEN e==+1

Simen= (?5) (ad—bc = 1) be a transformation of grade m+1 in Gy. Then the

radius 7(S(ms1)(D)) of a closed disc D by Sin:1)(2) is given by



40 Harushi FURUSAWA and Tohru AKAZA

o | e
7(Simany(D)) = 27| cl? j:—;p | z+d/c|?’

where D is a suitable one in {D(T% | | 7| < N and ¢ = *+1} . Here we note that the
point Sia1y(o0)=—d/c is in the outside of By".
If we put #,= ma}lgl z+d/c| and t,= mianDl z+d/c| , then we have,
Zed Ze

7D) 1 7D) | 1

2 ° ,
B2 = T 7 Tl

= 7(Smen(D)) £

where 7(D) is the radius of D. Hence we have the following lemma.

Lemma 8. There exists a positive constant ¢, depending only on By’ such that
33) 7(SimenyD(TIN) Z 117 (Simeny(D(TH))),

where Simiry = Sim e T5(T5'+ TE /= £1, e = £1).

8. Denote by F,, the family of all closed discs of grade n (= #,). It is easy to see
F,, is a covering of the limit set of I" and that the diameter of any disc of [, is less
than a given § (>0) for a sufficiently large »,. Let I(5, A (I")) be a family of a countable
number of closed discs U of the diameter ¢, < ¢ such that every point of A (") is a
point of at least one U. We call the quantity :

(34) M,(AT) = lim m s 7.
! 0 : ll(b‘,'xf\(l“))l U e 13, AD) v

the 7-dimensional Hausdorff measure of A(T).

9. From now we consider the limit set of Gy’ stated in Theorem 1. Since A(Gy') is
compact, A(Gy') is covered by a finite number of discs D,, D, ---, D, of any covering
system of {I(,A(Gy"))} . Take an arbitrary D, among these % discs and let ¢, (< §/2)
be the radius of D,. For a fixed D;, we can find closed discs Sin,(D1), *, S(mq(i))(DZ}m) in
nQOF » satisfying the following three conditions.

(i) The radius 7(Sinp(D3)) (1<7=q(i)) is larger than ¢, .

(i) There exists at least one disc of grade m;+1 among the discs contained in the
disc S(ms(Dj3), meeting D, and of radius 7(S(n,+1,(D%)) not larger than 7.

q(9)
(i) Y, Senp(D3) > D AGY),

where D} is a suitable one in {D(T9 | | j| =N, e = %1}
Hence we obtain from the preceding Lemma 8

(35 c117(Smp(D3) £ 7(Simsny(DR) £ £ < 7(Simp(DY) .

Constru(cg such discs {Smy(D3)} for each D, (1=<i<k). Then it is obvious that
koqli
N ].gl Simp(D3) > A(Gy") and

i=1
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Eoald) . k
(36) zl _21 b 7(SampDINV2 < 12 3 442
1=

j=

i=
where c¢,, is a constant depending only on Gy'.

Hence we obtain the following
inequality from Theorem 1 :

2 k /2
B 0< = (F(DTW*<c 3 ¢ 0=sp=).
|/l <N i=1

Thus we have the following lemma.

Lemma 9. Let Gy’ be the Schottky group defined in Theorem 1. Then it holds
M,(A(GN) >0 for 0= <1
2

10. The Hausdorff dimension of a point set F' in the z—plane is defined as the unique
non-negative number d(F’) satisfying

M%(F)=0, if #/2 >d(F)

and
M (F)=o00, if 0 1/2 <d(F),
7

where M, (F) denotes the #/2-dimensional Hausdorff measure of F. It is known that
the Hausdorff dimension increases according to the increment of the number of defining
circles [2] ; that is, d(Gy 1) > d(Gy ).

Thus we obtain the following main theorem.

Theorem 2. Let I be a kleinian group with parabolic elements. Then the Hausdorff
dimension d(T) = d(A)) is larger than 1/2.

Remark. It is known that % is the sharp estimate from [5] .
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