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Abstract. We consider the condition that a divisor in C* given by an entire
function. It is well known that a divisor A is algebraic if and only if

lim sup (N A7)/ logr) < oco.
¥ —>00

We shall give a simple proof of this theorem. Combining with the theorem of L. L
Ronkin, we shall give another characterization that A being algebraic.

§ 0. Introduction.

Let f(z) be an entire function of #» complex variables. It is an interesting problem
that under what conditions the divisor A= {zeC”; f(z)=0} becomes algebraic. In
connection with this problem, R. A. Kramer has shown that A is algebraic if and only if
there exists an 7e R% such that A A, is compact. We shall give a simple proof of this
theorem (Corollary of Theorem 1). In section 2, we shall give a characterization of
different type that A being algebraic as an application of Theorem 1.

§ 1. Put
Ri= {r=(r1, 72, 72) eR™; 7,50, 1< < n}
7| 2= 3 rf
i=1
and
2 n
b= 2= (o, zapmzn) e O b = L2l o 1Ealy

here we mean that A, = C if n=1.

Lemma 1. For any homogeneous polynomial P,(z) of degree m which is not identically
zero, there exists an v eR% such that P,(z) + 0 if ze A, — {0} , where o is the origin of
(0
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Proof. Put
A, = {Z€Cn~_|ﬂ=ﬁ|_: — 124 =1}
r 3 7 72 7n .

Then since P,, is homogeneous, we have only to show that P,(z) + 0 if zeA,. We shall
show the lemma by the induction on #» and m. If n=1 or m=0, then it is trivial.
Assume that the lemma holds for a homogeneous polynomial of at most z#-1 complex
variables or of degree at most m—-1 of » complex variables. Put

Po(z) = 2,:Q:1(2)+ Q2(22,23,...,2 ),

where Q, is identically zero or a homogeneous polynomial of degree m-1 and Q, is
identically zero or a homogeneous polynomial of degree m of n-1 complex variables z,,
Zs,..,Zn. Let Q, be identically zero, then by the induction hypothesis there exists an r ¢ R?
-such that Q.(z) # 0 if zeA,. Then z,Q.(z) # 0 if zeA,. In case that Q, is not identically
zero, there exists an r’ = (r,13,...,I,) ¢ R*;! such that Q,(z) # 0 in

L.:= {2¢C" ;| z;,| =r;,257=n} .
Since L, is compact,
c=min {| Q.(z')| ; 27eL,} > 0.
Then it holds that
| Pu0,2) | = | Q2(2) | > ¢

for all z’¢L,. Therefore there exists a positive number 7, such that P,(z,, z’) # 0
if | z, | =r, and z’¢ L,.. Put r=(r;, r’), then we obtain the desired conclusion. g.e.d

Now for an entire function f which is not identically zero, by removing the origin if
necessary, we may assume that f(o) + 0. Let » be a complex line which contains the
origin of C”. Let P* ' be the »n-1 dimensional complex projective space with volume
element dw ,_, and with voume wn-1. Then x can be considered as a point of p*'. For
a point a=(a, az,..,an) e C"— {o} , the slice function f,(w) of one complex variables w
is defined by

fa(w) = f(a1w, azw,...,ﬂnW).

Since f(0) # 0, f,(w) is not identically zero. Let S()= {zeC”;|z| =1} and let nAt: x)
be the number of the zeros of f,(w) in {weC;|w| <t} , where aeS(l) and » = x (a) is
the complex line passing through the origin and the point ¢. Put

nAt) = fnilnf(t:z)dw

n—1

and
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NAL) :f’ 2AS) g,

0
Since f(0) # 0 there exists a positive number #, such that

NAt)Zj;tn—’;(s—)—ds.

Since A, is a real submanifold of p* !, as was shown in (5] pp. 123-124, we can define
the volume element dwa on A, which is induced from d w,—,. Let w, be the volume of
A,. Put

¢
1y (2) :fo ——nf'SA(s) ds.

Let A= {z¢C”; f(z)=0} and let Vol(A~ B(r)) be the volume of A in the ball B(r) of
radius » with center at the origin. Then it is well known that

Vol (AN B(7))
¥

A is algebraic if and only if- . =0(1). @O

Let yAr: x (a)) be the number of the zeros of f,(w) in the disc {weC;|w]|
< r} without counting the multiplicities. It is shown in (7] that

72 n—-2
Vol(A~ B(r)) = — o f vl7 2 x (a))d o 2)
aeS(1)
where d ¢ is the surface element of S(1). By the definition,

vAr s x (@) Sndr:x (a)).

If P is a polynomial of degree m and if P.(w) is not identically zero, it is easily seen
that

ny(7: x (@) < mu(v . x (a)).
Now if A is algebraic, then there exists a polynomial P with P(o) # 0 such that
A= {zeC"; P(z)=0} . Since

nAr:x (@) = np(r: x (a)),
it holds that

S ndr x (@)do= [ ez x (@)do
2eS@) aeSQ)
<m f A7 2 (@)d o= O().
aeS(1)
Conversely, if

nAr: x(@)d o= 0(),
then by (2)
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PLERZ) — L [ Wi x(ahd o
2eS()
< 21 f nAr: x (@)a o= 0Q).
aeS()

Thus A is algebraic by (1). Therefore we have

Lemma 2. A s algebraic if and only if

[ ke x(@)do= 0.
a es(l)

Now since ndf: x (A a)) = nd¢: x (@) for any non zero complex number A, as was

shown in Stoll (6] pp. 142-143, it holds that

fnf(r: x(a)do=2r fnf(r: %)d wn_1.

aeS(1) prt
LemMma 3. A s algebraic if and only if
lim sup———-—— Tog NAr ) < o

Proof. By (1) and Lemma 2, the necessity is trivial. Suppose that
N - k.

lim sup——-—"— Tog

¥—> 00

If A is not algebraic, then there exists a sequence {r«} of positive numbers with re— co

(u—>o0) which satisfies

fnf(nz: P ka))da; e

aeSQ1)

Take a uy with 1/(2rwn_1) = 2K, then since nAr) is monotone increasing with respect to

r’

_ [t nds) ¢ nAs)
NAt) ‘.j;—? dsz [, L ds
= nAruw) (log t — log rw) = 2K (log t — log 7).

This is a contradiction.

Now between N {t) and N, (t), the following relation is known.

Lemma 4 (Ronkin (5], Theorem 2). Let| »| =1 and let ro=min {r;; 1<j<

any positive number 5> 1, there exists a positive number Cg such that
NA7ot) £ Npp(t) £ CsNAs ).

From Lemma 3 and 4, we have

n}

g.e.d.

. For
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THEOREM 1. A s algebraic if and only if

lim S“p—““—]\zljﬁ(:)

COROLLARY of THEOREM 1 (Kramer (4], Theorem 2.1). A is algebraic if and only if
there exists an r eR%? such that A~ A, is compact.

= 0(1).

Proof. Suppose that A is algebraic. Let P(z) be a polynomial such that A= {z¢C";
P(z)=0} . Let

P(z) = Py+P(2)+ ... +P(2)

where P; is a homogeneous polynomial of degree ; and P, is not identically zero. By
Lemma 1 there exists an r eR? such that P,(z) + 0 if zeA,— {o} . Let xCA, be a

complex line which is given by z;,=a,w (1<j<n), where a=(a,, a, - .., @») € S (1). Then
j=m )
P (w) = ,20 Pia)w’.
J:

Put c=min { | Pu(z) | ; ze SA)AA,} and ¢’=max { | Pn_j2) | ; zeS()NA, 1j<m| .
Then ¢>0 and

j=m
| Pow) | 2z cl w| ™=c¢ P wm,

Since ¢ and ¢’ do not depend on the choice of the complex line x C A,, we can choose a
positive number R, such that P(z) = 0 if zeA,~ {zeC"; |z | >Ro} . Therefore A~A,
is compact.

Conversely, if A~ A, is compact for some r ¢ R? then there exists a positive number
R, such that ndt: x) <nAR,: x) for any complex line x C A, which through the origin.
Then

1 [t ngals)
Neplt) = on . s ds

< _nsalRo) (log t — log t,)
WA

Then

llm Sup Nf,A(r) nf’A(R0)< 0.

=
7— o0 lOg 4 WA

Therefore A is algebraic by Theorem 1.

§ 2. Let f(z,w) be an entire function of n+1 complex variables z=(z,, z,, ..., Z,), W

and let f(o) = 0. Put A= {(z, w) e C"*'; f(z, w)=0} . If A is algebraic then there exists a
polynomial P(z, w) such that A= {(z, w) e C**!; P(z, w)=0} . Put

Pz, w) = Pul2)w™+ Pus(2)w™ + ...+ Po(2)
Pa(z) = Q™)+ Q™ (2)+ ... +Q"™(z)
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and
Py(z) = QP2)+ QW)+ ... +Q(z2),

where Q7 and Q) are homogeneous polynomials of degree v and . respectively. Since

Qm » QY is homogeneous, by Lemma 1, there exists a t=(z, ,..., ) e R”
such that Q™(z)« Q2¥(z) # 0 in A~ {o} . For o=(a, a,..., @) With| e, | =7
(1<j<n), Pulat, of, . .., aur) is the polynomial of degree ¢ with respect to ». Then it is

easily seen that there exists an r,’ =1 which is independent of o such that | Pulair, eor,
.., ar) | =1 for all r=r,. Since Pv(z) is a polynomial there exists a positive constant
Kv and a positive integer /v such that

1A
| Pu(alr) QZri'--,a’nr) | g K,,i’ g
for all r=r,. Put
K =max {K,;0sv=m—1} , | =max {], ; 0<v<m—1} .

Then

| Plen?, ao?y... o7, w) | = | w| "—Krt 3 |w| ™*

for all r=ry. Let ro=max(K+1, ry’). Then it is easily seen that P(ar, aur, ..., a.r, w) = 0
for all r=r, and for all w with | w | =r**!. This means that for z e A,—B(xr,), any root
of the equation f(z, w)=0 with respect to w is in {weC;|w| < |z]|*'} , where
Bro)= {zeC";| z| <ro} . Since Q®(z) = 0 in A,— {o} , for any complex line »C A,
with o e z, the number of the zeros of Py(z) | _ is independent of ». Consequently if A is
algebraic then f satisfies the following condition ().

There exists a positive number r,=1, a positive integer / and a re R” such that

(i) for each zeA,—B(r,), any root of the equation f(z, w)=0 with respect to w is
in{weC;|w|< |z,

(ii) the number of the zeros of f(z, o) | , is independent of r, where r is a complex
line passing through the origin and f(z, o) | , is the restriction of f(z, o) to .
The purpose of this paragraph is to show the converse of the above.

THEORM 2. Let f(z, w)be an entive function of two complex varviables z, w and let
f(o) + 0. Assume that there exists a positive number v, =1 and a positive integer | such that
Jor each z with | z| Zv,, any root of the equation f(z, w)=0 with respect to w is n

{weC;|w| < |z|! . Then A is algebraic.

Proof. 1If | z| =r, then the number of the zeros of f(z, w) with respect to w is
independent of z.

In fact, for any r,>71,, f(z, w) 0 in {(z, W) eC?; r,< |z | <1y, |W| =r'=p} .
Then
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3
- flz, w)
_ 1 ow
NG)=— - f o dw

|w] =p
is continuous and integer valued in an annulas r,< | z | <r,, that is N(z) is constant in
| z| =r,. Put m: =N(z) for z with |z | =r1,. Let | z| >1, and let w,(z), w»(2), ...,
Wn(z) be the zeros of f(z, w) with respect to w. Put

hi(z) = — j,=2m w {z), ha(z) = = wiz)waiz),...
7j=1 . J+k
hlz) = (—1)" ]hl w ,(2).
i

Then h,(z), hy(z), ..., h,(z) are helomorphic in | z | >r,.
In fact, take a point z, with |z, | >1,. Then for z with | z—z, | < | 2o | —1,, m
zeros of f(z, w) with respect to w arein {weC;|w| <@ |z, | —1,)=K} . Put

A= {zeClz—z0| < lzo|l =70} ,00= {weC;|lwl| <K} .
Since An (A, X 9A,) is empty, by Weierstrass Preparation theorem,
Az w) = (wm+a,(2)w™ +. .. +anz)eH?
in A, X A,, where @ ,(z) is holomorphic in A, and H(z, w) is holomorphic in A; X A,. Then
An (A xC) = {(z w)eC?; wmt+a,(z)w™ +... +an2)=0 A~ (A xZ).

Since %,(z), k,(z), ..., hn(z) are fundamental symmetric functions of w,(z), w,(z), ...,
wn(2), it holds that % ;(z)=a,(z) in A,. That is 2 ,(2) (1<j<m) are holomorphic in A,. This
holds at each point z with | z | >r,, then %,(z) is holomorphic in | z | >r,. Now, there
exists a positive number g, such that %,(z)+ 0 in| z | >p. In fact, expand % ,(z) into
Laurent series % ,(z)=h,, (z)+h " (z), where

@)= "3 ez bt =3 o

v=1

If % ,(z) is identically zero, then f(z, 0)=0 in | z | >r1,. Then f(z,0) is identically zero and
this is impossible. Therefore either %,  or h," is not identically zero. If | z | =r,
then | w;(z) | < | z|*% sothat | h(z)] < |z]| ™. Then

ml
el S5 [ —Fmldel=rm

7,y+1

Since r>r, is arbitrary, ¢, =0 if v >ml, so that & ,*(z) is a polynomial. Then it is easily
seen that there exists a positive number p, >1, such that h,(z) # 0 in |z | >p. Let r
> o, and put

Nr, 7) = (5= [7[* log| fire®, e ) | dbdy

and



24 Chikara WATANABE

1) = [Tiog| fz, v'e™) | d 4
Then
N Ar r‘)=——1—— 2”I(re"ﬁ)dﬁ
A 27 J o )
Since & ,(z)# 0in | z | > po, it holds that f(z, 0) = 0 if | z | =r. Then
I(z) = log| Az, 0) | — y=§71n log | w—;(lz)—l =ml log »
+log| f(z, 0) | —log| hnlz) .

The function log | % ,(z) | is harmonic in | z | > gy, so that by the well known formula in
an annulas p < | z | <ry,

—21— "log | hnlte®) | d0= alog t+b,
T 0

where o <t<r, and a, b are constants independent of ¢. This holds for all r,(> ), so
that we have

-21— " log | hn(re®) | dO= alog r+b
T J o

for all r> . Since f(z, 0) = 0 in | z | > py,
1 2z 0 N , ,

Wfo log| frei® 0) | do=k, log r+F,
for all r> p,. Therefore we have

NAr, ") = mllog r+ sznlogl flre®, 0) | do—alog »

’ 27 J o ’

—b=Fklogr+k,

where &, and %, are constants independent of r> . Here we need the following

Lemma 4(Ronkin (5] page 125 and 138). Let f be an entive function of n complex
variables and let f(0) + 0. Then for any t= (t1, ©, ..., ) € RT with | ¢ | =1, it holds that

R 1 n 2x i 6,
NAur, ar, .., wr): = (5 fo /0 log | flzreid:,
Tz?’eigz, ey rnreien) d@ldez .. d@n = Nf’A(V).
Since N {r,, 7,) is monotone increasing with respect to », and 7,, we have
NAnr, ur) = NAr, 7)) £ kilog v+ k&,

for all r >, and for any fixed r with | z| =1. Then A is algebraic by Theorem 1. q.e.d.
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THEOREM 3. Let f(z, w) be an entirve function of n+ 1 complex variables z=(z, z,, ..., Zn)
and w. Let (o, o) = 0. If f(z, w) satisfies the condition (), then A= {(z, w) ¢ C**'; {(z,
w)=0} s algebraic.

Proof. Put

2, oz

21 _ n _
tlzTytZ— T A n ylfl—ly

and

g(l‘) w) :f(Tltly TZtZy ) Tntn, w)-

2

If g(t, w)=0 for teAon {2eC?; |t| =Vner,} , then 3| rt; | 2 = I;I =102, SO
that | w| < | t]*¢ where Ap= {teC”;|t,| =t | =...=[t,|} . Since (ii) in the
condition () holds for g(¢, 0) and A,, we may assume that

=( 1 1 1 ).
Put

7N‘n: {aecn;,al|:|02’:...:|anl=—1—}

S

and

fdv, w) = flav, ;v, ..., ¢0, w).

Then fov, w) is an entire function of two complex variables v, w which is not iden-
tically zero. If z e Ao, then z;=q;v for some aeT, and v with |v| =12z]|, so that any
zero w of f, (v, w) with respect to w satisfies the condition | w| < | v |* for all v
with | v | >r1,. Then by Theorem 2, A= {(v, w)e C?;f.(v,w)=0} is algebraic. Put

e, w) = ”zé':”) P (0)exp(H v, w)

where P9 (v) is a polynomial and Pf,,a()a) (v) = 0. By the proof of Theorem 2, the number of
the zeros of f{v, w) with respect to w is independent of » for each ae T, whenever
|z |>r,. Then Pf,‘f()a) v)+=0in] v | >r,. Now, m(e) is independent of ae"IN‘,,. In fact, take
any v, with | v, | >1, and fix it. Then m(a) is the number of the zeros of f(v,, w) for

aeT, Take any BeT, Since Sowo, w)# 0 in| w| =|w, | there exists a positive
number ¢ such that

e< min { | flv, w)| ;lwl =]ove | .

Since f(v,, w) is continuous with respect to « and w, there exists an open neighbourhood
VC T, of B such that | f(vo, w)— f5(ve, w)| < ¢ if aeV and | w | = | v, | *. Then by the
theorem of Rouché, the number of the zeros of f.(v,, w)is the same as that of f4(v,, w)
for all ae V. Therefore m(e)=m(p) if a eV, so that by the connectedness of T,, m(q) is
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independent of aeT,. put m: =m(e) and let wila: ), wsla: v),...;we,(a: v) be the
distinct zeros of f (v, w) with respect to w, where | v | >1,. Let mi(a), m(a), ..., msu, ()
be their multiplicities and put

ho(v) = (wi(a: v)I™E@ (w,y(a: v))ml, [wka(a: U)]mk"(a)-

Then & (v) is continuous with respect to ¢ and » in T,x (veC;|v]| >rf .

In fact, take any Be T, and any v, with | vy | >1,. Let § be a positive number such
that | w:8: vo)—ws(B:vs) | >3 8 if i#j. Then fy(vy, w)# 0 in | w—w,(B: vo) | =& for
any 7, so that there exists a positive number '8, such that

&< min min { | flve, w) | ;| w—w,(8: vo) | =&} .
1sj<kg

Now, for any given ¢>0, we may assume that § <e. Take a positive number§<
[ vo| —ro such that| f(v, w) —fs(ve, w) | <& whenever | o—£| <e |v—v,| <&
and | w—w;(8: v,) | <& . Then the number of the zeros of f(v, w) in | w—w,(8: vo) | <&
conincides with m;(#: v,), the multiplicity of w;(8: v,), for each ; whenever | «—p£ | <&
and | v—v, | <& Since

j=kp
m = ‘21 miB: Vo),
]:

any zero of f(v, w) is in some disc {weC ;| w—w,(B: v,) | <&} whenever | a—p | <&
and | v —v, | <& That is to say, any zero w(e: v) of f(v, w) with respect to w satisfies
the condition | w(a: v) — w;(8: vo) | <& <e for some j whenever | a—p| <&
and | v —v,|<§. Then & (v) is continuous in T, x {veC;lv]| >} .

Moreover, there exists a gy =1, such that s (v)# 0if | v | > 0.

In fact, by the proof of Theorem 2, for each aeTn, there is a p(e)=r1, such that
hv)# 0 if | v | 2po(a). Take any BeT. and any ¢ >0 such that ¢ < min {| f4v, 0)|
ilv | =m(@)} . Then there exists an open neighbourhood V of g8 such that | f(v, 0)
— falv, 0) | <eif aeV and | v | =w(8). Then f,(v,0)has the same number of the zeros
as that of fy(v, 0) in | v | <o(p) for all qeV.Then by the conditign (ii) of (%), f(v,0)
+0 if aeV and | v | 2p(H). Therefore by the compactness of T,, we can choose a
00 =T, such that z,(v)+ 0if | v | =p. Thus we have

l 27 0 _
| oo fo log| h(re®) | d6= ki(a)log 7+ ki(a),

and k,(o) log r+£k,(e) is continuous in T, for each r=pp. Let r,>1,> 0, then k,(a)logr, ‘
—k,(a)log r, is continuous in T, Then k(o) and k»(a) are continuous in T, Put
k;=min {kia);ae T, (i=1, 2). Then since we may assume that p,> €,

% zﬂlogl ho(re®) | d 8> k) log r+ k) 3).

Because h,(v)+ 0 in | v | =p,, it holds that f (v, 0)+ 0 if | v | 2. Then by the same
method, the number of the zeros of fJv, 0) with respect to v is independent of ae T,.
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Let m be its number. By the same calculation as that in the proof of Theorem 2,
D BN ig lyid
Ia )= Y[ " [Tiog| f(res e | dody
yv=m ay
= log| fofo,0) | — 3 log| — | +ml log »
_ 1 i
7 [ iog| hire®)| ao

for all r>p,, where a, is the zero of fi(v, 0). Since f, (o, 0) # 0, there exists a positive
number § which is independent of «e T, such that |a,| >6 for all ,, so that

log | @,| >log 6. Then by (3)

I(a, 7) < (ml+m—ky)log r—mlog 5+ log| f,(0, 0) |
—kz, = kllog 7’+k2

where %, and %, are constants independent of ». Put

_ 1 1 1

——6161, =——é ey n:—eign,zjzreiey
“ S * v “ N3
then
1 vpie 27 2x 1 aa+e L ia+o
(271') fO'.'fologlf(ﬁre ,ﬁre Y
1 (6, +0) 4l,id
e’ %t yloit) | dOdpdode...db,
Jn | paa
1 o 2 2”[ 1 id 1 i 1 i
= (- o reitl; e, ..., re'tn,
( 2r ) fo fo 2| ﬂ«/?[ S V' "
r'e®) | dgid o . .d dnd =N—y—,..., 7,7‘.
)| dpd b $na b A = — )
Now,

1 \puo [2r 2r; 1 a+e 1 ie+a
(2”) fo 00g|f(ﬁre ,...,/_re ,

n

) 1 2 2 1
L,id — (—— ) ks Tr(—2 )2
re®) d6,de...d 6,dod¢ (zﬂ)fo_..fo [(2”)

log | f(re®, r'e'? | dOd¢) d6:db ...d 6,

_ ]_ n 27 27
= () fo fo I(a, 7)d 6:d6,. ..d6< kilog 1+ k,.
Therefore we have

Nf(7_rn~, . ,ﬁ, v) < kilog v+ k.

Put
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( 1 1 n+1

ey R#1,
VIR «/n—i-l)e

T=

then it holds that

1 1 4 7 7
N 7) = N4 e , < N4 e ——, 7
sae (7) VOES Jn+1 /n+1) e n )
< kilog r+k,
for all r> . Thus A is algebraic by Theorem 1. qg.e.d.

REMARK, Let f(z, w) be a pseudopolynomial given by
flz, w) = az)w™ta,(2)w™ 4. ..+ anz),

where ay(0) + 0 and ajz) (0<j<m) are entirve functions of n complex variables z=(z,
Za,...,2,). If [ satisfies the condition (1) of (%), then A= {(z, w)eC™"; flz, w)=0} is
algebraic.

Proof. From the assumption aq(z)+ 0 if zeA,and | z | >r,. In fact, let a,(2°)=0 for
some 2% A, with |2°| >r1,. Then since ao(0) = 0, it is easily seen that a,(z) is not
identically zero in QA A, for any open neighbourhood Q of z,. By the condition (i), there
exists a j such that a;(z°) # 0. Let a,(z,)* 0 for simplicity. Take a bounded neighbo-
urhood V of z° such that VAA,C A, —B(r,) and that |a,(z)| =k>0 in V. Then there
exists a constant K>0 such that any zero w of f(z, w) satisfies the inequality | w| <K
if ze A,~ V. Then

| a,(z)

2.2) | < mK

if ze A~V and a,(z)=+ 0. But this is a contradiction since we can choose a sequence
{zW} in A, such that a,(z) = 0 and that zW—z,. That is a,(z)* 0 if zeA, and
| 2| >1,. Then since the analytic set {zeC”; go(2)=0} is algebraic, there exists an
entire function H(z) and a polynomial P(z) such that a,(z)=P(z)exp(H(z)). We shall show
that a j(z)exp(—H(z)) is a polynomial. Take any aeTn and fix it. Let | z | >r, and let
w,(v), wo(v), ... wu(v) be the zeros of f v, w) with respect to w. Put

hov) = — E;" w(v), @) = ajz)exp(— H(2)).

Then by the proof of Theorem 2, h«v) is holomorphic in | v | >r, and its Laurent series
is given by

h) = Q)+ 'S v,

where Q(v) is a polynomial of degree at most /.
On the other hand, since a,(av)=a,(av)h(v)in | v | >1,,
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Zav) = Rw)+ 5 d_p

=1
where R(v) is a polynomial of degree at most , which is independent of ae T, Then
d_, = 0 for all v since @,(z)is an entire function, that is @;(e?) is a polynomial of degree
at most p for all aeTn. Therefore a,(z) is a polynomial because T, is a set of
uniqueness for holomorphic functions. Entire functions @,(z), @s(2),...,an(z) are also
polynomials by the same manner. Q.E.D.
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