A Note on an Algebraic Divisor in C^n

Chikara Watanabe

Department of Mathematics, College of Liberal Arts, Kanazawa University. (Received May 13, 1978)

Abstract. We consider the condition that a divisor in C^n given by an entire function. It is well known that a divisor A is algebraic if and only if

$$\lim_{r\to\infty}\sup \;(N_{\mathit{f}}(r)/\;\log r)<\infty.$$

We shall give a simple proof of this theorem. Combining with the theorem of L. I. Ronkin, we shall give another characterization that A being algebraic.

§ 0. Introduction.

Let f(z) be an entire function of n complex variables. It is an interesting problem that under what conditions the divisor $A = \{z \in \mathbb{C}^n; f(z) = 0\}$ becomes algebraic. In connection with this problem, R. A. Kramer has shown that A is algebraic if and only if there exists an $r \in \mathbb{R}^n$ such that $A \cap \Delta_r$ is compact. We shall give a simple proof of this theorem (Corollary of Theorem 1). In section 2, we shall give a characterization of different type that A being algebraic as an application of Theorem 1.

§ 1. Put

$$\begin{array}{l} {\bf R}_+^n = \; \{ \, r = (r_1, \; r_2, ..., \; r_n) \; \epsilon {\bf R}^n \; ; \; r_j \! > \! 0, \; 1 \! \leq \! j \! \leq \! n \} \quad , \\ |\; r \, | \; ^2 = \sum\limits_{j \, = \, 1} r_j^{\; 2} \\ \end{array} \label{eq:reconstruction}$$

and

$$\Delta_r = \{ z = (z_1, z_2, ..., z_n) \in \mathbb{C}^n ; \frac{|z_1|}{r_1} = \frac{|z_2|}{r_2} = ... = \frac{|z_n|}{r_n} \}$$

here we mean that $\Delta_r = \mathbb{C}$ if n=1.

LEMMA 1. For any homogeneous polynomial $P_m(z)$ of degree m which is not identically zero, there exists an $r \in \mathbb{R}^n$ such that $P_m(z) \neq 0$ if $z \in \Delta_r - \{o\}$, where o is the origin of \mathbb{C}^n .

Proof. Put

$$\widetilde{\Delta}_r = \{ z \in \mathbb{C}^n ; \frac{|z_1|}{r_1} = \frac{|z_2|}{r_2} = \dots = \frac{|z_n|}{r_n} = 1 \}$$
.

Then since P_m is homogeneous, we have only to show that $P_m(z) \neq 0$ if $z \in \widetilde{\Delta}_r$. We shall show the lemma by the induction on n and m. If n=1 or m=0, then it is trivial. Assume that the lemma holds for a homogeneous polynomial of at most n-1 complex variables or of degree at most m-1 of n complex variables. Put

$$P_m(z) = z_1 Q_1(z) + Q_2(z_2, z_3, ..., z_n),$$

where Q_1 is identically zero or a homogeneous polynomial of degree m-1 and Q_2 is identically zero or a homogeneous polynomial of degree m of n-1 complex variables z_2 , $z_3,...,z_n$. Let Q_2 be identically zero, then by the induction hypothesis there exists an $r \in \mathbb{R}^n_+$ such that $Q_1(z) \neq 0$ if $z \in \widetilde{\Delta}_r$. Then $z_1Q_1(z) \neq 0$ if $z \in \widetilde{\Delta}_r$. In case that Q_2 is not identically zero, there exists an $r' = (r_2, r_3, ..., r_n) \in \mathbb{R}^{n-1}_+$ such that $Q_2(z) \neq 0$ in

$$L_{r'}$$
: = $\{z' \in \mathbb{C}^{n-1} ; |z_j| = r_j, 2 \le j \le n\}$.

Since $L_{r'}$ is compact,

$$c = min \{ | Q_2(z') | ; z' \in \mathbb{L}_{r'} \} > 0.$$

Then it holds that

$$|P_m(0, z')| = |Q_2(z')| > c$$

for all $z' \in L_{r'}$. Therefore there exists a positive number r_1 such that $P_m(z_1, z') \neq 0$ if $|z_1| = r_1$ and $z' \in L_{r'}$. Put $r = (r_1, r')$, then we obtain the desired conclusion. q.e.d.

Now for an entire function f which is not identically zero, by removing the origin if necessary, we may assume that $f(o) \neq 0$. Let κ be a complex line which contains the origin of \mathbb{C}^n . Let \mathbb{P}^{n-1} be the n-1 dimensional complex projective space with volume element $d\omega_{n-1}$ and with voume ω_{n-1} . Then κ can be considered as a point of \mathbb{P}^{n-1} . For a point $a=(a_1,\ a_2,...,a_n)\in\mathbb{C}^n-\{o\}$, the slice function $f_a(w)$ of one complex variables w is defined by

$$f_a(w) = f(a_1 w, a_2 w, ..., a_n w).$$

Since $f(o) \neq 0$, $f_a(w)$ is not identically zero. Let $S(l) = \{z \in \mathbb{C}^n; |z| = 1\}$ and let $n_f(t: \kappa)$ be the number of the zeros of $f_a(w)$ in $\{w \in \mathbb{C}; |w| < t\}$, where $a \in S(l)$ and $\kappa = \kappa$ (a) is the complex line passing through the origin and the point a. Put

$$n_f(t) = \frac{1}{\omega_{n-1}} \int_{P^{n-1}} n_f(t : \kappa) d\omega$$

and

$$N_f(t) = \int_0^t \frac{n_f(s)}{s} ds.$$

Since $f(0) \neq 0$ there exists a positive number t_0 such that

$$N_f(t) = \int_{t_0}^t \frac{n_f(s)}{s} ds.$$

Since Δ_r is a real submanifold of p^{n-1} , as was shown in [5] pp. 123–124, we can define the volume element $d\omega_{\Delta}$ on Δ_r which is induced from $d\omega_{n-1}$. Let ω_{Δ} be the volume of Δ_r . Put

$$n_{f,\Delta}(t) = \int_0^t \frac{n_{f,\Delta}(s)}{s} ds.$$

Let $A = \{z \in \mathbb{C}^n; f(z) = 0\}$ and let $Vol(A \cap B(r))$ be the volume of A in the ball B(r) of radius r with center at the origin. Then it is well known that

A is algebraic if and only if
$$\frac{Vol(A \cap B(r))}{r^{2n-2}} = O(1)$$
. (1)

Let $\nu_r(r: x (a))$ be the number of the zeros of $f_a(w)$ in the disc $\{w \in C; |w| < r\}$ without counting the multiplicities. It is shown in [7] that

$$Vol(A_{\cap}B(r)) = \frac{r^{2n-2}}{2\pi} \int_{a \in S(1)} \nu_f(r : \kappa(a)) d\sigma$$
 (2)

where d σ is the surface element of S(1). By the definition,

$$\nu_f(r:\kappa(a)) \leq n_f(r:\kappa(a)).$$

If P is a polynomial of degree m and if $P_a(w)$ is not identically zero, it is easily seen that

$$n_{b}(r: \kappa(a)) \leq m_{V_{b}}(r: \kappa(a)).$$

Now if A is algebraic, then there exists a polynomial P with $P(o) \neq 0$ such that $A = \{z \in \mathbb{C}^n ; P(z) = 0\}$. Since

$$n_f(r:\kappa(a)) = n_p(r:\kappa(a)),$$

it holds that

$$\int_{a \in S(1)} n_{f}(r : \kappa(a)) d\sigma = \int_{a \in S(1)} n_{p}(r : \kappa(a)) d\sigma$$

$$\leq m \int_{a \in S(1)} \nu_{f}(r : \kappa(a)) d\sigma = O(1).$$

Conversely, if

$$n_f(r: \kappa(a))d \sigma = O(1),$$

then by (2)

$$\frac{Vol (A \cap B(r))}{r^{2n-2}} = \frac{1}{2\pi} \int_{a \in S(1)} \nu_f(r : \kappa(a)) d\sigma$$

$$\leq \frac{1}{2\pi} \int_{a \in S(1)} n_f(r : \kappa(a)) a\sigma = O(1).$$

Thus A is algebraic by (1). Therefore we have

LEMMA 2. A is algebraic if and only if

$$\int_{a \in S(1)} n_f(r : \kappa(a)) d\sigma = O(1).$$

Now since $n_s(t: \kappa(\lambda a)) = n_s(t: \kappa(a))$ for any non zero complex number λ , as was shown in Stoll [6] pp. 142–143, it holds that

$$\int_{a \in S(1)} n_f(r : \kappa(a)) d\sigma = 2\pi \int_{P^{n-1}} n_f(r : \kappa) d\omega_{n-1}.$$

LEMMA 3. A is algebraic if and only if

$$\lim_{r\to\infty}\sup\frac{N_f(r)}{\log r}<\infty$$

Proof. By (1) and Lemma 2, the necessity is trivial. Suppose that

$$\lim_{r \to \infty} \sup \frac{N_{f}(r)}{\log r} = K.$$

If A is not algebraic, then there exists a sequence $\{r_{\mu}\}$ of positive numbers with $r_{\mu} \rightarrow \infty$ $(\mu \rightarrow \infty)$ which satisfies

$$\int_{a \in S(1)} n_f(r_\mu : \kappa(a)) d \sigma \ge \mu.$$

Take a μ_0 with $\mu_0/(2\pi\omega_{n-1}) \ge 2K$, then since $n_r(r)$ is monotone increasing with respect to r,

$$N_{f}(t) = \int_{t_{0}}^{t} \frac{n_{f}(s)}{s} ds \ge \int_{r\mu_{0}}^{t} \frac{n_{f}(s)}{s} ds$$

$$\ge n_{f}(r\mu_{0}) (\log t - \log r\mu_{0}) \ge 2K(\log t - \log r\mu_{0}).$$

This is a contradiction.

q.e.d.

Now between $N_f(t)$ and $N_{f,\Delta}(t)$, the following relation is known.

Lemma 4 (Ronkin [5], Theorem 2). Let |r| = 1 and let $r_0 = \min \{r_j; 1 \le j \le n\}$. For any positive number $\delta > 1$, there exists a positive number C_{δ} such that

$$N_f(r_0 t) \leq N_{f,\Delta}(t) \leq C_{\delta} N_f(\delta t).$$

From Lemma 3 and 4, we have

THEOREM 1. A is algebraic if and only if

$$\lim_{r\to\infty}\sup\frac{N_{f,\Delta}(r)}{\log r}=O(1).$$

COROLLARY of THEOREM 1 (Kramer [4], Theorem 2.1). A is algebraic if and only if there exists an $r \in \mathbb{R}^n_+$ such that $A \cap \Delta_r$ is compact.

Proof. Suppose that A is algebraic. Let P(z) be a polynomial such that $A = \{z \in \mathbb{C}^n; P(z) = 0\}$. Let

$$P(z) = P_0 + P_1(z) + \ldots + P_m(z)$$

where P_j is a homogeneous polynomial of degree j and P_m is not identically zero. By Lemma 1 there exists an $r \in \mathbb{R}^n_+$ such that $P_m(z) \neq 0$ if $z \in \Delta_r - \{o\}$. Let $\kappa \in \Delta_r$ be a complex line which is given by $z_j = a_j w$ $(1 \leq j \leq n)$, where $a = (a_1, a_2, \ldots, a_n) \in S$ (1). Then

$$P_a(w) = \sum_{j=0}^{j=m} P_j(a) w^j.$$

Put $c=\min \{ \mid P_{\textit{m}}(z) \mid ; z \in S(1) \cap \Delta_r \}$ and $c'=\max \{ \mid P_{\textit{m-j}}(z) \mid ; z \in S(1) \cap \Delta_r \ 1 \leq j \leq m \}$. Then c>0 and

$$|P_a(w)| \ge c |w|^m - c' \sum_{j=1}^{j=m} w^{m-j}.$$

Since c and c' do not depend on the choice of the complex line $\alpha \in \Delta_r$, we can choose a positive number R_0 such that $P(z) \neq 0$ if $z \in \Delta_r \cap \{z \in \mathbb{C}^n; |z| > R_0\}$. Therefore $A \cap \Delta_r$ is compact.

Conversely, if $A \cap \Delta_r$ is compact for some $r \in \mathbb{R}^n_+$ then there exists a positive number R_0 such that $n_r(t : \kappa) \leq n_r(R_0 : \kappa)$ for any complex line $\kappa \in \Delta_r$ which through the origin. Then

$$N_{f,\Delta}(t) = \frac{1}{\omega_{\Delta}} \int_{t_0}^{t} \frac{n_{f,\Delta}(s)}{s} ds$$

$$\leq \frac{n_{f,\Delta}(R_0)}{\omega_{\Delta}} (\log t - \log t_0)$$

Then

$$\limsup_{r\to\infty}\frac{N_{\text{f},\Delta}(r)}{\log\,r}\leq\frac{n_{\text{f},\Delta}\left(R_{\text{o}}\right)}{\omega_{\!\Delta}}<\infty.$$

Therefore A is algebraic by Theorem 1.

§ 2. Let f(z,w) be an entire function of n+1 complex variables $z=(z_1,\,z_2,\,\ldots,\,z_n),\,w$ and let $f(o)\neq 0$. Put $A=\{(z,\,w)\in C^{n+1}\,;\, f(z,\,w)=0\}$. If A is algebraic then there exists a polynomial $P(z,\,w)$ such that $A=\{(z,\,w)\in C^{n+1}\,;\, P(z,\,w)=0\}$. Put

$$P(z, w) = P_m(z)w^m + P_{m-1}(z)w^{m-1} + \dots + P_0(z)$$

$$P_m(z) = Q_{\ell}^{(m)}(z) + Q_{\ell}^{(m)}(z) + \dots + Q_{\ell}^{(m)}(z)$$

and

$$P_0(z) = Q_s^{(0)}(z) + Q_s^{(0)}(z) + \ldots + Q_s^{(0)}(z),$$

where $Q_{\nu}^{(m)}$ and $Q_{\mu}^{(0)}$ are homogeneous polynomials of degree ν and μ respectively. Since $Q_{t}^{(m)} \cdot Q_{s}^{(0)}$ is homogeneous, by Lemma 1, there exists a $\tau = (\tau_{1}, \tau_{2}, \ldots, \tau_{n}) \in \mathbb{R}^{n}$

such that $Q_s^{(m)}(z) \cdot Q_s^{(0)}(z) \neq 0$ in $\Delta_r - \{0\}$. For $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n)$ with $|\alpha_j| = \tau_j$ $(1 \leq j \leq n)$, $P_m(\alpha_1 r, \alpha_2 r, \ldots, \alpha_n r)$ is the polynomial of degree t with respect to r. Then it is easily seen that there exists an $r_0' \geq 1$ which is independent of α such that $|P_m(\alpha_1 r, \alpha_2 r, \ldots, \alpha_n r)| \geq 1$ for all $r \geq r_0'$. Since $P_{\nu}(z)$ is a polynomial there exists a positive constant K_{ν} and a positive integer l_{ν} such that

$$|P_{\nu}(\alpha_1 \mathbf{r}, \alpha_2 \mathbf{r}, \dots, \alpha_n \mathbf{r})| \leq K_{\nu} r^{l_{\nu}}$$

for all $r \ge r_0$. Put

$$K = \max \{K_{\nu}; 0 \le \nu \le m-1\}, l = \max \{l_{\nu}; 0 \le \nu \le m-1\}.$$

Then

$$|P(\alpha_1 r, \alpha_2 r, \ldots, \alpha_n r, w)| \ge |w|^m - Kr^{l} \sum_{k=1}^{k=m} |w|^{m-k}$$

for all $r \ge r_0'$. Let $r_0 = \max(K+1, r_0')$. Then it is easily seen that $P(\alpha_1 r, \alpha_2 r, \ldots, \alpha_n r, w) \ne 0$ for all $r \ge r_0$ and for all w with $|w| \ge r^{t+1}$. This means that for $z \in \Delta_\tau - B(r_0)$, any root of the equation f(z, w) = 0 with respect to w is in $\{w \in C ; |w| < |z|^{t+1}\}$, where $B(r_0) = \{z \in C^n; |z| < r_0\}$. Since $Q^{(0)}(z) \ne 0$ in $\Delta_\tau - \{o\}$, for any complex line $\pi \in \Delta_\tau$ with $o \in \pi$, the number of the zeros of $P_0(z)|_{\pi}$ is independent of π . Consequently if A is algebraic then f satisfies the following condition f(x).

There exists a positive number $r_0 \ge 1$, a positive integer l and a $\tau \in \mathbb{R}^n$ such that

- (i) for each $z \in \Delta_{\tau} B(r_0)$, any root of the equation f(z, w) = 0 with respect to w is in $\{w \in \mathbb{C} ; |w| < |z|^{t}\}$,
- (ii) the number of the zeros of $f(z, o) \mid_{\pi}$ is independent of π , where π is a complex line passing through the origin and $f(z, o) \mid_{\pi}$ is the restriction of f(z, o) to π . The purpose of this paragraph is to show the converse of the above.

THEORM 2. Let f(z, w) be an entire function of two complex variables z, w and let $f(o) \neq 0$. Assume that there exists a positive number $r_0 \geq 1$ and a positive integer l such that for each z with $|z| \geq r_0$, any root of the equation f(z, w) = 0 with respect to w is in $\{ w \in \mathbb{C} : |w| < |z|^{l} \}$. Then A is algebraic.

Proof. If $|z| \ge r_0$ then the number of the zeros of f(z, w) with respect to w is independent of z.

In fact, for any $r_1\!>\!r_0,\ f(z,\ w)\neq 0$ in $\{(z,\ w)\in C^2\ ;\ r_0\!\le\!\mid z\mid <\!r_1,\ \mid w\mid =\!r_1{}^t\!=\!\rho\}$. Then

$$N(z) = \frac{1}{2\pi i} \int_{|w|=\rho} \frac{\frac{\partial}{\partial w} f(z, w)}{f(z, w)} dw$$

is continuous and integer valued in an annulas $r_0 \le |z| < r_1$, that is N(z) is constant in $|z| \ge r_0$. Put m := N(z) for z with $|z| \ge r_0$. Let $|z| > r_0$ and let $w_1(z)$, $w_2(z)$, ..., $w_m(z)$ be the zeros of f(z, w) with respect to w. Put

$$h_1(z) = -\sum_{\substack{j=1 \ j=m}}^{j=m} w_j(z), \qquad h_2(z) = \sum_{\substack{j \neq k}} w_j(z)w_k(z), \dots$$

 $h_m(z) = (-1)^m \prod_{\substack{j=1 \ j=m}}^{j=m} w_j(z).$

Then $h_1(z)$, $h_2(z)$,..., $h_m(z)$ are holomorphic in $|z| > r_0$.

In fact, take a point z_0 with $|z_0| > r_0$. Then for z with $|z-z_0| < |z_0| - r_0$, m zeros of f(z, w) with respect to w are in $\{w \in \mathbb{C} ; |w| < (2|z_0|-r_0)^l = K\}$. Put

$$\Delta_1 = \{z \in \mathbb{C}; |z - z_0| < |z_0| - r_0\}, \Delta_2 = \{w \in \mathbb{C}; |w| < K\}$$

Since $A \cap (\Delta_1 \times \partial \Delta_2)$ is empty, by Weierstrass Preparation theorem,

$$f(z, w) = (w^m + a_1(z)w^{m-1} + \ldots + a_m(z))e^{H^{(z,w)}}$$

in $\Delta_1 \times \Delta_2$, where $a_j(z)$ is holomorphic in Δ_1 and H(z, w) is holomorphic in $\Delta_1 \times \Delta_2$. Then

$$A \cap (\Delta_1 \times \mathbb{C}) = \{(z, w) \in \mathbb{C}^2 ; w^m + a_1(z)w^{m-1} + \ldots + a_m(z) = 0\} \cap (\Delta_1 \times \mathbb{C}).$$

Since $h_1(z), h_2(z), \ldots, h_m(z)$ are fundamental symmetric functions of $w_1(z), w_2(z), \ldots, w_m(z)$, it holds that $h_j(z) = a_j(z)$ in Δ_1 . That is $h_j(z)$ $(1 \le j \le m)$ are holomorphic in Δ_1 . This holds at each point z with $|z| > r_0$, then $h_j(z)$ is holomorphic in $|z| > r_0$. Now, there exists a positive number ρ_0 such that $h_m(z) \ne 0$ in $|z| > \rho_0$. In fact, expand $h_m(z)$ into Laurent series $h_m(z) = h_m^{-}(z) + h_m^{+}(z)$, where

$$h_{m}^{-}(z) = \sum_{\nu=1}^{\nu=\infty} c_{-\nu} z^{-\nu}$$
 , $h_{m}^{+}(z) = \sum_{\nu=0}^{\nu=\infty} c_{\nu} z^{\nu}$

If $h_m(z)$ is identically zero, then f(z, o) = 0 in $|z| > r_0$. Then f(z, o) is identically zero and this is impossible. Therefore either h_m^- or h_m^+ is not identically zero. If $|z| \ge r_0$ then $|w_j(z)| < |z|^l$, so that $|h_m(z)| < |z|^{ml}$. Then

$$\mid c_{\nu} \mid \leq \frac{1}{2\pi} \int \frac{r^{ml}}{r^{\nu+1}} \mid d \zeta \mid = r^{ml-\nu}.$$

Since $r > r_0$ is arbitrary, $c_{\nu} = 0$ if $\nu > ml$, so that $h_{m}^+(z)$ is a polynomial. Then it is easily seen that there exists a positive number $\rho_0 > r_0$ such that $h_m(z) \neq 0$ in $|z| > \rho_0$. Let $r > \rho_0$ and put

$$N_f(r, r^t) = (\frac{1}{2\pi})^2 \int_0^{2\pi} \int_0^{2\pi} \log|f(re^{i\theta}, r^t e^{i\phi})| d\theta d\phi$$

and

$$I(z) = \frac{1}{2\pi} \int_{0}^{2\pi} log | f(z, r^{l}e^{i\phi}) | d \phi.$$

Then

$$N_f(r, r^i) = \frac{1}{2\pi} \int_0^{2\pi} I(re^{i\theta}) d\theta.$$

Since $h_m(z) \neq 0$ in $|z| > \rho_0$, it holds that $f(z, 0) \neq 0$ if |z| = r. Then

$$I(z) = \log |f(z, o)| - \sum_{\nu=1}^{\nu=m} \log |\frac{w_{\nu}(z)}{r^{\ell}}| = m\ell \log r + \log |f(z, o)| - \log |h_{m}(z)|.$$

The function $\log |h_m(z)|$ is harmonic in $|z| > \rho_0$, so that by the well known formula in an annulas $\rho_0 < |z| < r_1$,

$$\frac{1}{2\pi} \int_0^{2\pi} \log |h_m(te^{i\theta})| d\theta = a\log t + b,$$

where $\rho_0 < t < r_1$ and a, b are constants independent of t. This holds for all $r_1(>\rho_0)$, so that we have

$$\frac{1}{2\pi} \int_{0}^{2\pi} \log |h_m(re^{i\theta})| d\theta = a\log r + b$$

for all $r > \rho_0$. Since $f(z, 0) \neq 0$ in $|z| > \rho_0$,

$$\frac{1}{2\pi} \int_{0}^{2\pi} \log|f(re^{i\theta}, o)| d\theta = k_1' \log r + k_2'$$

for all $r > \rho_0$. Therefore we have

$$N_{f}(r, r^{t}) = ml \log r + \frac{1}{2\pi} \int_{0}^{2\pi} \log |f(re^{i\theta}, o)| d\theta - a\log r$$
$$-b = k_{1} \log r + k_{2}$$

where k_1 and k_2 are constants independent of $r > \rho_0$. Here we need the following

LEMMA 4(Ronkin [5] page 125 and 138). Let f be an entire function of n complex variables and let $f(o) \neq 0$. Then for any $\tau = (\tau_1, \tau_2, \ldots, \tau_n) \in \mathbb{R}^n_+$ with $|\tau| = 1$, it holds that

$$N_f(au_1 r, au_2 r, \ldots, au_n r) := (rac{1}{2\pi})^n \int_0^{2\pi} \ldots \int_0^{2\pi} log \mid f(au_1 r e^{i heta_1}, au_2 r e^{i heta_2}, \ldots, au_n r e^{i heta_n}) \ d heta_1 d heta_2 \ldots d heta_n = N_{f, \wedge}(r).$$

Since $N_r(r_1, r_2)$ is monotone increasing with respect to r_1 and r_2 , we have

$$N_f(\tau_1 r, \tau_2 r) \leq N_f(r, r^l) \leq k_1 \log r + k_2$$

for all $r > \rho_0$ and for any fixed τ with $|\tau| = 1$. Then A is algebraic by Theorem 1. q.e.d.

THEOREM 3. Let f(z, w) be an entire function of n+1 complex variables $z=(z_1, z_2, \ldots, z_n)$ and w. Let $f(o, o) \neq 0$. If f(z, w) satisfies the condition (*), then $A = \{(z, w) \in \mathbb{C}^{n+1} ; f(z, w) = 0\}$ is algebraic.

Proof. Put

$$t_1 = \frac{z_1}{\overline{z_1}}, t_2 = \frac{z_2}{\overline{z_2}}, \dots, t_n = \frac{z_n}{\overline{z_n}}, |\tau| = 1,$$

and

$$g(t, w) = f(\tau_1 t_1, \tau_2 t_2, \dots, \tau_n t_n, w).$$

If g(t, w)=0 for $t \in \Delta_0 \cap \{t \in \mathbb{C}^n; |t| \ge \sqrt{n \cdot r_0}\}$, then $\sum |\tau_i t_i|^2 = \frac{|t|^2}{n} \ge r_0^2$, so that $|w| < |t|^t$, where $\Delta_0 = \{t \in \mathbb{C}^n; |t_1| = |t_2| = \ldots = |t_n|\}$. Since (ii) in the condition (*) holds for g(t, o) and Δ_0 , we may assume that

$$\tau = (\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}, \dots, \frac{1}{\sqrt{n}}).$$

Put

$$\tilde{T}_n = \{ \alpha \in \mathbb{C}^n ; |\alpha_1| = |\alpha_2| = \ldots = |\alpha_n| = \frac{1}{\sqrt{n}} \}$$

and

$$f_{\alpha}(v, w) = f(\alpha_1 v, \alpha_2 v, \dots, \alpha_n v, w).$$

Then $f_a(v, w)$ is an entire function of two complex variables v, w which is not identically zero. If $z \in \Delta_0$, then $z_j = \alpha_j v$ for some $\alpha \in \widetilde{T}_n$ and v with |v| = |z|, so that any zero w of $f_a(v, w)$ with respect to w satisfies the condition $|w| < |v|^t$ for all v with $|v| > r_0$. Then by Theorem 2, $A = \{(v, w) \in \mathbb{C}^2 : f_a(v, w) = 0\}$ is algebraic. Put

$$f_{a}(v_{0}, w) = \sum_{\nu=0}^{\nu=m(a)} P_{\nu}^{(a)}(v) exp(H_{a}(v, w))$$

where $P_{\nu}^{(a)}(v)$ is a polynomial and $P_{m(a)}^{(a)}(v) \not\equiv 0$. By the proof of Theorem 2, the number of the zeros of $f_{\alpha}(v, w)$ with respect to w is independent of v for each $\alpha \in \widetilde{T}_n$ whenever $|v| > r_0$. Then $P_{m(a)}^{(a)}(v) \not\equiv 0$ in $|v| > r_0$. Now, m(a) is independent of $\alpha \in \widetilde{T}_n$. In fact, take any v_0 with $|v_0| > r_0$ and fix it. Then $m(\alpha)$ is the number of the zeros of $f_{\alpha}(v_0, w)$ for $\alpha \in \widetilde{T}_n$. Take any $\beta \in \widetilde{T}_n$. Since $f_{\beta}(v_0, w) \not\equiv 0$ in $|w| \ge |v_0|^{\ell}$, there exists a positive number ε such that

$$\varepsilon < \min \{ | f_{\beta}(v, w) | ; | w | = | v_0 |^{\iota} \}$$
.

Since $f_{\alpha}(v_0, w)$ is continuous with respect to α and w, there exists an open neighbourhood $V \subset \widetilde{T}_n$ of β such that $|f_{\alpha}(v_0, w) - f_{\beta}(v_0, w)| < \varepsilon$ if $\alpha \in V$ and $|w| = |v_0|^{\epsilon}$. Then by the theorem of Rouché, the number of the zeros of $f_{\alpha}(v_0, w)$ is the same as that of $f_{\beta}(v_0, w)$ for all $\alpha \in V$. Therefore $m(\alpha) = m(\beta)$ if $\alpha \in V$, so that by the connectedness of \widetilde{T}_n , $m(\alpha)$ is

independent of $\alpha \in \widetilde{T}_n$, put $m := m(\alpha)$ and let $w_1(\alpha : v)$, $w_2(\alpha : v)$, ..., $w_{k_\alpha}(\alpha : v)$ be the distinct zeros of $f_\alpha(v, w)$ with respect to w, where $|v| > r_0$. Let $m_1(\alpha)$, $m(\alpha)$, ..., $m_{k_\alpha}(\alpha)$ be their multiplicities and put

$$h_{\alpha}(v) = [w_1(\alpha : v)]^{m_1(\alpha)} [w_2(\alpha : v)]^{m_2(\alpha)} \dots [w_{k_{\alpha}}(\alpha : v)]^{m_{k_{\alpha}}(\alpha)}.$$

Then $h_{\alpha}(v)$ is continuous with respect to α and v in $\widetilde{T}_n \times \{v \in \mathbb{C}; |v| > r_0\}$.

In fact, take any $\beta \in \widetilde{T}_n$ and any v_0 with $|v_0| > r_0$. Let δ_1 be a positive number such that $|w_i(\beta: v_0) - w_j(\beta: v_0)| > 3 \delta_1$ if $i \neq j$. Then $f_{\beta}(v_0, w) \neq 0$ in $|w - w_j(\beta: v_0)| = \delta_1$ for any j, so that there exists a positive number δ_2 such that

$$\delta_2 < \min_{1 \le j \le k_\beta} \min \left\{ \mid f_\beta(v_0, w) \mid ; \mid w - w_j(\beta : v_0) \mid = \delta_1 \right\}.$$

Now, for any given $\varepsilon>0$, we may assume that $\delta_1<\varepsilon$. Take a positive number $\delta<|v_0|-r_0$ such that $|f_{\alpha}(v,w)-f_{\beta}(v_0,w)|<\delta_2$ whenever $|\alpha-\beta|<\varepsilon,|v-v_0|<\delta$ and $|w-w_j(\beta:v_0)|<\delta_1$. Then the number of the zeros of $f_{\alpha}(v,w)$ in $|w-w_j(\beta:v_0)|<\delta_1$ conincides with $m_j(\beta:v_0)$, the multiplicity of $w_j(\beta:v_0)$, for each j whenever $|\alpha-\beta|<\delta$ and $|v-v_0|<\delta$. Since

$$m = \sum_{j=1}^{j=k_{\beta}} m_{j}(\beta : v_{0}),$$

any zero of $f_{\alpha}(v, w)$ is in some disc $\{w \in \mathbb{C} : |w-w_{j}(\beta): v_{0}\} | < \delta_{1} \}$ whenever $|\alpha-\beta| < \delta$ and $|v-v_{0}| < \delta$. That is to say, any zero $w(\alpha): v_{0} = 0$ of $f_{\alpha}(v, w)$ with respect to w satisfies the condition $|w(\alpha): v_{0}| = 0$ of $|w(\alpha): v_{0}| =$

Moreover, there exists a $\rho_0 \ge r_0$ such that $h_a(v) \ne 0$ if $|v| > \rho_0$.

In fact, by the proof of Theorem 2, for each $\alpha \in \widetilde{T}_n$, there is a $\rho_0(\alpha) \ge r_0$ such that $h_\alpha(v) \ne 0$ if $|v| \ge \rho_0(\alpha)$. Take any $\beta \in \widetilde{T}_n$ and any $\varepsilon > 0$ such that $\varepsilon < \min \{|f_\beta(v,o)|\}$; $|v| = \rho_0(\beta) \}$. Then there exists an open neighbourhood V of β such that $|f_\alpha(v,o)| - |f_\beta(v,o)| < \varepsilon$ if $\alpha \in V$ and $|v| = \rho_0(\beta)$. Then $|f_\alpha(v,o)|$ has the same number of the zeros as that of $|f_\beta(v,o)|$ in $|v| < \rho_0(\beta)$ for all $|\alpha \in V|$. Then by the condition (ii) of $|f_\alpha(v,o)| \ne 0$ if $|f_\alpha(v,o)| \ne 0$ if $|f_\alpha(v,o)| \ne 0$ if $|f_\alpha(v,o)| \ne 0$. Thus we have

$$\frac{1}{2\pi} \int_0^{2\pi} \log |h_{\alpha}(re^{i\theta})| d\theta = k_1(\alpha) \log r + k_2(\alpha),$$

and $k_1(\alpha)$ log $r+k_2(\alpha)$ is continuous in \widetilde{T}_n for each $r \ge \rho_0$. Let $r_1 > r_2 > \rho_0$, then $k_1(\alpha) \log r_1 - k_1(\alpha) \log r_2$ is continuous in \widetilde{T}_n . Then $k_1(\alpha)$ and $k_2(\alpha)$ are continuous in \widetilde{T}_n . Put $k_i' = \min \{k_i(\alpha); \alpha \in \widetilde{T}_n\}$ (i=1, 2). Then since we may assume that $\rho_0 > e$,

$$\frac{1}{2\pi} \int_0^{2\pi} \log |h_{\alpha}(re^{i\theta})| d\theta > k_1' \log r + k_2' \tag{3}.$$

Because $h_a(v) \neq 0$ in $|v| \geq \rho_0$, it holds that $f_a(v, o) \neq 0$ if $|v| \geq \rho_0$. Then by the same method, the number of the zeros of $f_a(v, o)$ with respect to v is independent of $\alpha \in \widetilde{T}_n$.

Let \overline{m} be its number. By the same calculation as that in the proof of Theorem 2,

$$\begin{split} I(\alpha, \ r) &:= (\frac{1}{2\pi})^2 \int_0^{2\pi} \int_0^{2\pi} \log |\ f_{\alpha}(re^{i\theta}, \ r^i e^{i\phi}) \ |\ d\theta \, d\phi \\ &= \log |\ f_{\alpha}(0, \ 0) \ |\ - \sum_{\nu=1}^{\nu=m} \log |\ \frac{a_{\nu}}{r} \ |\ + ml \log r \\ &- \frac{1}{2\pi} \int_0^{2\pi} \log |\ h_{\alpha}(re^{i\theta}) \ |\ d\theta \end{split}$$

for all $r>_{\rho_0}$, where a_{ν} is the zero of $f_{\alpha}(v, 0)$. Since $f_{\alpha}(0, 0) \neq 0$, there exists a positive number δ which is independent of $\alpha \in \widetilde{T}_n$ such that $|a_{\nu}| > \delta$ for all ν , so that $\log |a_{\nu}| > \log \delta$. Then by (3)

$$I(\alpha, r) \leq (ml + \overline{m} - k_1') \log r - \overline{m} \log \delta + \log |f_{\alpha}(0, 0)|$$
$$-k_2' = k_1 \log r + k_2$$

where k_1 and k_2 are constants independent of r. Put

$$\alpha_1 = \frac{1}{\sqrt{n}} e^{i\theta_1}, \ \alpha_2 = \frac{1}{\sqrt{n}} e^{i\theta_2}, \dots, \alpha_n = \frac{1}{\sqrt{n}} e^{i\theta_n}, \ v = re^{i\theta},$$

then

$$\frac{1}{2\pi})^{n+2} \int_{0}^{2\pi} \dots \int_{0}^{2\pi} \log |f(\frac{1}{\sqrt{n}} re^{i(\theta_{i}+\theta)}, \frac{1}{\sqrt{n}} re^{i(\theta_{i}+\theta)}, \dots,
\frac{1}{\sqrt{n}} re^{i(\theta_{n}+\theta)}, r^{i}e^{i\phi}) | d\theta d\phi d\theta_{1} d\theta_{2} \dots d\theta_{n}
= (\frac{1}{2\pi})^{n+1} \int_{0}^{2\pi} \dots \int_{0}^{2\pi} \log |f(\frac{1}{\sqrt{n}} re^{i\phi_{1}}, \frac{1}{\sqrt{n}} re^{i\phi_{1}}, \dots, \frac{1}{\sqrt{n}} re^{i\phi_{n}},
r^{i}e^{i\phi}) | d\phi_{1} d\phi_{2} \dots d\phi_{n} d\phi = N_{f}(\frac{r}{\sqrt{n}}, \dots, \frac{r}{\sqrt{n}}, r^{i}).$$

Now.

$$\frac{(\frac{1}{2\pi})^{n+2} \int_{0}^{2\pi} \dots \int_{0}^{2\pi} \log |f(\frac{1}{\sqrt{n}} re^{i(\theta_{1}+\theta)}, \dots, \frac{1}{\sqrt{n}} re^{i(\theta_{n}+\theta)}, \\ r^{t}e^{i\phi}) d\theta_{1} d\theta_{2} \dots d\theta_{n} d\theta d\phi = (\frac{1}{2\pi})^{n} \int_{0}^{2\pi} \dots \int_{0}^{2\pi} [(\frac{1}{2\pi})^{2}] \\ \log |f_{a}(re^{i\theta}, r^{t}e^{i\phi})| d\theta d\phi d\phi d\theta_{1} d\theta_{2} \dots d\theta_{n}$$

$$= (\frac{1}{2\pi})^{n} \int_{0}^{2\pi} \dots \int_{0}^{2\pi} I(\alpha, r) d\theta_{1} d\theta_{2} \dots d\theta_{n} \leq k_{1} \log r + k_{2}.$$

Therefore we have

$$N_{f}(\frac{r}{\sqrt{n}},\ldots,\frac{r}{\sqrt{n}},r) \leq k_{1}\log r + k_{2}.$$

Put

$$\tau = (\frac{1}{\sqrt{n+1}}, \dots, \frac{1}{\sqrt{n+1}}) \in \mathbb{R}^{n+1}_+,$$

then it holds that

$$N_{f,\Delta r}(r) = N_f(\frac{1}{\sqrt{n+1}}, \dots, \frac{1}{\sqrt{n+1}}, \frac{r}{\sqrt{n+1}}) \leq N_f(\frac{r}{\sqrt{n}}, \dots, \frac{r}{\sqrt{n}}, r^t)$$

$$\leq k_1 \log r + k_2$$

for all $r > \rho_0$. Thus A is algebraic by Theorem 1.

q.e.d.

REMARK. Let f(z, w) be a pseudopolynomial given by

$$f(z, w) = a_0(z)w^m + a_1(z)w^{m-1} + \ldots + a_m(z),$$

where $a_0(0) \neq 0$ and $a_j(z)$ $(0 \leq j \leq m)$ are entire functions of n complex variables $z = (z_1, z_2, \ldots, z_n)$. If f satisfies the condition (i) of (*), then $A = \{(z, w) \in \mathbb{C}^{n+1} ; f(z, w) = 0\}$ is algebraic.

Proof. From the assumption $a_0(z) \neq 0$ if $z \in \Delta_\tau$ and $|z| > r_0$. In fact, let $a_0(z^0) = 0$ for some $z^0 \in \Delta_\tau$ with $|z^0| > r_0$. Then since $a_0(0) \neq 0$, it is easily seen that $a_0(z)$ is not identically zero in $\Omega \cap \Delta_\tau$ for any open neighbourhood Ω of z_0 . By the condition (i), there exists a j such that $a_j(z^0) \neq 0$. Let $a_1(z_0) \neq 0$ for simplicity. Take a bounded neighbourhood V of z^0 such that $V \cap \Delta_\tau \subset \Delta_\tau - \overline{B(r_0)}$ and that $|a_1(z)| \geq k > 0$ in V. Then there exists a constant K > 0 such that any zero V of v satisfies the inequality |v| < K if $v \in \Delta_\tau \cap V$. Then

$$\left| \frac{a_1(z)}{a_2(z)} \right| < mK$$

if $z \in \Delta_{\tau \cap} \mathbb{V}$ and $a_0(z) \neq 0$. But this is a contradiction since we can choose a sequence $\{z^{(\omega)}\}$ in Δ_{τ} such that $a_0(z^{(\omega)}) \neq 0$ and that $z^{(\omega)} \rightarrow z_0$. That is $a_0(z) \neq 0$ if $z \in \Delta_{\tau}$ and $|z| > r_0$. Then since the analytic set $\{z \in \mathbb{C}^n : a_0(z) = 0\}$ is algebraic, there exists an entire function H(z) and a polynomial P(z) such that $a_0(z) = P(z) \exp(H(z))$. We shall show that $a_j(z) \exp(-H(z))$ is a polynomial. Take any $a \in T_n$ and fix it. Let $|z| > r_0$ and let $w_1(v), w_2(v), \ldots, w_m(v)$ be the zeros of $f_0(v, w)$ with respect to w. Put

$$h \circ (v) = -\sum_{j=1}^{j=m} w_j(v), \ \widetilde{a}_j(z) = a_j(z) exp(-H(z)).$$

Then by the proof of Theorem 2, $h_{\alpha}(v)$ is holomorphic in $|v| > r_0$ and its Laurent series is given by

$$h_{\alpha}(v) = Q(v) + \sum_{\nu=1}^{\nu=\infty} c_{-\nu} v^{-\nu},$$

where Q(v) is a polynomial of degree at most l.

On the other hand, since $a_1(\alpha v) = a_0(\alpha v) h_\alpha(v)$ in $|v| > r_0$,

$$\widetilde{a}_1(\alpha v) = R(v) + \sum_{\nu=1}^{\nu=\infty} d_{-\nu}v^{-\nu},$$

where R(v) is a polynomial of degree at most μ which is independent of $\alpha \in T_n$. Then $d_{-\nu} = 0$ for all ν since $\alpha_1(z)$ is an entire function, that is $\widetilde{\alpha}_1(\alpha v)$ is a polynomial of degree at most μ for all $\alpha \in \widetilde{T}_n$. Therefore $\widetilde{\alpha}_1(z)$ is a polynomial because \widetilde{T}_n is a set of uniqueness for holomorphic functions. Entire functions $\widetilde{\alpha}_2(z)$, $\widetilde{\alpha}_3(z)$, ..., $\widetilde{\alpha}_m(z)$ are also polynomials by the same manner. Q.E.D.

References.

- [1] L. Ahlfors, Complex Analysis, New York McGraw-Hill, 1953.
- (2) H. Fujimoto, Families of holomorphic maps into the projective space omitting some hyperplanes, J. Math. Soc. Japan, 25 (1973), 235-249.
- [3] ——, The uniqueness problem of meromorphic maps into the complex projective space, Nagoya Math. J., 58 (1975), 1-23.
- [4] R A Kramer, Zeros of entire functions in several complex variables, Trans. of the Amer. Math. Soc., 172 (1972), 143–160.
- [5] L. I. Ronkin, An analog of the cananical product for entire functions of several complex variables, Trans. Moscow Math., 18 (1968), 117–160.
- [6] W. Stoll, Mehlfache Integral auf komplexen Mannigfaltigkeiten, Math. Zeit., 57 (1952), 116-154.
- [7] ———, The growth of the area of a transcendental analytic set (II), Math. Ann., 158 (1964), 144–170.