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Abstract. In this paper, we shall study a relation between weak and strong
pseudoconvexities. In §1, we consider the weakly l-complete manifold whose
canonical line bundle is negative outside some compact set on X. In §1 and §2, we
shall obtain a relation between weak and strong pseudoconvexities by assuming some
topological (or algebraic) conditions. Moreover, its topological condition is closely

related to Oka’s principle and the globalization of solutions for some differential
equation.

§0. Preliminaries

Let X be a n-dimensional paracompact complex manifold and let »; £ — X be a
holomorphic vector bundle of rank=m on X. Let E be defined by 1-cocycle

€5 Uim Uj'—) GL(m, C)

in such a way that (z;, &) ¢ U, xC™ and (z;, &) e U;xC™ are identified if and only if
z,=2z; ti=e,(z;)¢ ¢ There exists a hermitian metric {&;=(%;3)}; for an open
covering U= {U,},;,; of X. The g-connection § with respect to the metric % is defined
locally by 9;=h;'9h; on each U,. The (A, n)-component of (m, m)-matrix of ¢; is as
follows :

o= % % gm i e

i a=l.=1 ° 02f

where (z%) is the local coordinates on U,. The curvature form is given by 6,=+v —1 36,

—_— n
whose (A, x)-component is as follows: 6}, =/ —1 3 0/,.,5dzi A az’
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The following definition was first given by Nakano [7].
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DeriniTiON 1. A holomorphic vector bundle is said to be positive (or negative) in the
sense of Nakano, if there exists a fibre metric % such that the (mn, mn)-matrix

m A
Hi: (I{iﬁ,uaﬁ)y H'Vuayz /\El hi/{?@z',uaﬂﬂ

is positive definite (or negative definite) everywhere.

In particular, for the case m= 1, E is a holomorphic line bundle on X. Then E is
represented by the transition functions {%,;} with respect to some open covering
U= {U;} ;o of X. E is said to be positive (or {semiy negative) if there exists a metric

{a;t;eq witha, > 0on U, for any el and | %,; |2 =a7' + a; on U; n U, such that the
Levi-form L (—log a;) is positive definite (or negative {semi) definite). We denote by
E-'=FE* the dual bundle of E. If holomorphic line bundle F' is positive (or negative), its
dual line bundle F* is negative (or positive). Now, we define some pseudoconvexity and

refer to its vanishing theorem and finiteness theorem by Nakano and Ohsawa (8], (9],
(113.

DeriniTION 2. A complex manifold X is said to be weakly 1-complete with respect
to @, if (1) @ is a pseudoconvex C=-function on X, . (2) {ze X | @(z) < ¢} is relatively
compact or empty for each ¢ e R.

When D is a domain on X, we define similarly as above weak 1-completeness of D.

RemMark. By definition, weakly 1-complete manifold is paracompact and any closed
submanifold of weakly 1-complete manifold is weakly 1-complete.
Nakano established the following theorem.

Nakano’s VANISHING THEOREM. Let X be a weakly 1-complete manifold with respect
to @ and B be a positive line bundle on X, then

H?(X, QUB))= 0 Jor p+q > n (n=dim¢X) .

Remark. First, Nakano proved that there holds H?(X., Q%B))=0 for p+q > n
for any ce R, where X.= {ze X| ©(z) < ¢} , but in [9]) he succeeded in its globali-
zation.

Later, T. Ohsawa showed the following finiteness theorem which was conjectured
by Nakano.

Let X be as above and B be a positive outside a compact subset A of X, then
dim,H?(X, QMB)) < + oo for p =1
and
H(X, Q"(B))=H*(X.,Q™B)) for any ¢> 0 and p= 1.

ReEmMark, A holomorphic line bundle is said to be positive (or negative) on a subset
Y C X, if there exists a metric {a;};,; on B for a suitable covering U= {U;}l; of X
such that the Levi form L (—log a;) is positive definite (or negative definite) on U; N ¥
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for any 7 e ],
§1. Weak 1-completeness and holomorphical convexity.

In this section we prove the following
Tueorem 1. Let X be a weakly 1-complete manifold with respect to @ whose canonical
line bundle Kx 1s negative on X— A, where A is a compact subset of X.

(o) Let zg be a point on 3X. for some c eR, where X,.= {zeX| o(z)<c¢} , @ is
strongly pseudoconvex at z, and z, ¢ A. Then therve exists a holomorphic function f on X,
such thaz‘zlni_rgﬂ flz,)= oo

ZneXc

(8 Let X satisfy the following conditions :

(i) cp(Kx)~ 0 (or strongly H, (X, Z)=0) in H*(X, R),
(i1) b6, (X)=2 dim. HY(X, 0),

where ¢, (Kx) is the real (1, 1)~form represented by (2z/ —1)"'- (—a3 3 log a;) for a metric
{a}ia on Ky and b,(X) is the first Betti number of X.
Then X 1s holomorphically convex with maximal compact analytic subset M.
Proor of (a). Since X is weakly 1-complete with respect to &, there exists ¢ € R
such that AC{zeX|o(z) < ¢} and 9{z € X|®(z) < ¢} is smooth by Sard’s theorem.
We define A: R — R as follows.

0 fr=sc

exp [—(t—ig);%—t—c] ift>c¢

At)=

Then A(®) is a pseudoconvex C™-function vanishing in a neighborhood of A and 9 {z € X |
AM@(z))= 0} is smooth, so we replace ¢ by w=A(¢). Then X is weakly 1-complete
with respect to ¥ *. After now, we discuss about ¥. Let z, be a point on 39X, for some
d > 0 where v is C*-strongly pseudoconvex at z,. By Satz 1.4 in (3], there exists a
neighborhood U of z, and a holomorphic function / on U such that {z e U]
f(2)=0} N {zeX|w(z)<dl = {2z, . Choose d >0 so near to d >0 that

{zeU| flz)=0} naUn X, =¢. Let U'CU be an open set containing z, with {z € U] -
Az)=0} "(U-U)nXy=¢, then 1/f(z) is holomorphic in U-— U’. The functions
1/ [Az)]" in U, 0 in X;— U define a first Cousin datum in X, for open covering

{X;—U’, Ul and every integer re N. Let h, be a corresponding element in
HY Xy, 0) for =1, 2, ---. By finiteness theorem, k= dim, H'(X,, 0)=dim; H'(X, 0)
is finite for @= Q™(Kx), hence there are constants ci,...,c,(p < k+1), ¢, = 0 such
that E ¢r hr =0 in HY(X,, @). Since each %, is a first Cousin datum and the first
Cousm data for the same covering are additively closed, this implies that there exists a

*  This proof is due to Ohsawa ((11], Proposition 2.2).
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meromorphic function g in Xy such that g— él ¢-/f" is holomorphic in U, while g is
holomorphic in X, —U’. The restriction of ¢ to X, is a holomorphic function in X,
such that Zlni_rg ) 9(z,)= co. g.e.d.
Zne X4
Before W)é prove (B), we refer to the holomorphic line bundle and the associated real
(1, 1)~form. Let 4 be the sheaf of germs of pluriharmonic functions on a paracompact
complex manifold X. Then we consider the following

@ o R—— 0 —su# 0,
where 7 is defined by j(f)=Re f for every fe @.

2 0 Z 0 =2 o> 0.

3 0 H 6% 936 0,

where 65 is the sheaf of germs of real valued C*-functions on X.
(4) Sheaf homomorphism o : @*— 3, defined by o()=Q@rv/ —1)7" log | f] .

(6) Characteristic homomorphism ¢, : H(X, 0*) — H*(X, Z) induced by (2) and
homomorphism :*: H*(X, Z) — H?>(X, R) induced by the sheaf homomorphism i:
Z — R, where R is the sheaf of germs of real constants. Put c¢,=:%0 ¢, : H'(X,
0* — H*X, R) .

Then, by (4) we obtain the homomorphism p*: H'(X, @* — H'(X, #). Now
each cohomology class F' has a representation {f;;} for a suitable covering, we can
write o*(F)=(@z/ 1) log | fi; | )=(4n/=1)' (loga;—loga,)), where {a;} is a
metric of F for U= {U;};q such that | f;;|2=a;'*a; on every U,nU, and
moreover, from (3) real (1, 1)-form —(4»/ —1)"'95log a; on X corresponds to oF(F) by

. . I'(X,096%)
the isomorphism H'(X, )= 2299 R}
( ) 99 I(X, 83)

From (1) we obtain the homomorphism

& HY (X, #)— H*(X, R), then the image of o*(F) by &* is represented by
(Zzv/ —1)7" (log fi;+1og fix+10g fry)) .

Therefore, we obtain the following commutative diagram :

*

H\(X, 0% £ > H'(X, #)
Cpr 5*

H*(X, R)
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Then, by de Rham isomorphism, real (1, 1)-form -(2zv/ —1)"'3dlog @; on X corresponds
to cp(F). We denote it by yz. From the exact cohomology sequence H'(X,
() )—1; HY(X, #)—%5 H*(X, R) induced by (1), we obtain

(%) 7*HY(X, 0))= 0= The homomorphism §* is injective.

Therefore, when (#*) holds, for some F ¢ H'(X, 0*) c¢,(F)~ 0 implies 4/ —1 o (F)~0
in H'(X, ) i.e. by (3), there exists a real valued C*-function / on X such that 55 /= 4~
o/ =1 yp- In particular, if ' is a positive (or negative) holomorphic line bundle, ¢, (£)~ 0
implies that there exists a strongly pseudoconvex C®—function f (resp. —f). But this is
impossible in compact case of X, for 7, is a generator of H*(X, R)®. When we
consider the condition which c¢g(F) is cohomologous zero in H?*(X, R) for any
holomorphic line bundle F, we can assume H,(X, Z)= 0, where H,(X, Z) is 2nd
singular homology group of X in the coefficient Z. It is reason why (1) in paracompact
Hausdorff space, Cech (co-) homology theory and singular (co-) homology theory are
equivalent, and (2) by universal coefficient theorem H,(X, R)=H,(X, Z)®,R, H"(X,
R)= Hom, (H,(X, R), R) for 0 < p < dimpX. Still, the above assumption is essential
when X is a noncompact complex manifold.

Proor of (5). By finiteness theorem, the condition (ii) has the meaning. By the
assumption, there exists a metric {a;};, on Kx for some open covering [ = {U;} i
of X such that the Levi-form L(-log @;) is negative definite on U; Nn(X—A) for any
7 el Since X is paracompact, we may assume that /= {iel| U,nA #+ ¢} is finite
set and we can take U = {U,}ics such that each U, is compact in X for every i € I
Put c;;(z)=log a;(z)-log a.(z) on ze U;n U,, then cocycle c=(c,;) € H'(X, ) is equal to
4/ —1 p*(Kx) by the above discussion. Consider the segment of exact cohomology
sequence, H'(X, R)"—*>Hl (X, o) AN H'(X, 5#) SN H*(X, R), then by the
assumption (ii) and wuniversal coefficient theorem, 7* is isomorphic as real finitely
dimensional vector space, so the homomorphism §* is injective. Therefore by the
assumption (i) 47/ —1p*(Kx)=c is cohomologous zero in H'(X, #). Then, there
exists a 1-cochain (c¢;);,; € C°(U, 5#) such that c,;=c,—c; on U;nU; for every i+ j.
Put ¢ (z)=log a.(z) —ci(z) for z € U,, then ¢ is a global real valued C=-function on X
and ¢ is C*-strongly pseudoconvex on X— K where K = ZSQJ/ U,isa compact subset of X.
Let A(Z) be a real valued C~-function of ¢ € R such that A(#) >0, X(#)>0 and A7(¢) >0
for every ¢ e R.

Put w=o+A(¢), then we may assume @ =0 on X, it is easily verified that

{zeX| w(z) < ¢} is relatively compact in X for every ¢ > 0 and ¥ is C*-strongly
pseudoconvex on X—K by 99¥=030+A () 93¢+ (t) a4 N\ d¢. As same as the
proof of (a), we can replace ¥ by ¥ on X such that ¥ = 0 in a neighborhood W of K
(ACK), 9{zeX| w(z)=0} is smooth, ¥ is C>-strongly pseudoconvex on X— W and

®  See (6], Theorem 1.4 at p.88.



12 Kensh6 TAKEGOSHI

moreover {zeX| ¥(z) < ¢} is relatively compact in X for every ¢ > 0. Therefore
W is compact in X. Since ¥ is C=-pseudoconvex on X and C=-strongly pseudoconvex
on g{zeX| V(z)< c}, from (o) Xc= {z2eX| ¥(z) < ¢} is holomorphically convex
for every ¢ > 0 and ché/o X.. Hence X is holomorphically convex. Let (r, S) be a
holomorphic reduction of X, then each fibre ~'(w), weS is a compact connected
analytic subspace in X. Put M= {z e X |z is not an isolated point in r 'ox(z)}, then
we remark that M is an analytic subset in X. If MCX— W, ¥ is constant on each
component of M, if MN(X— W)=+ ¢ also ¥ is constant on each component of
M~ (X— W), these are contradictory to the strong pseudoconvexity of ¥ on X— W.
Therefore MC W. Since W is compact, M is a compact analytic subset, so M is written
as follows ; M= i\i M, where each M; is a compact connected and nowhere discrete
analytic subset (1 £ 7 < p). And moreover M is the maximal compact analytic set in X
(For a detail, see(3)). Put (M,)=w.,eS (1< i< p). Since each fibre »'(w) is a
compact connected analytic subspace, by the maximality of M, » '(w) is one point for
every w € S—{w,}%,. Therefore »: X— M— S— {w;}?, is biholomorphic, then in
relation to the finiteness theorem, it holds that dim H?(X, &) < +o for p > 0 and any
coherent analytic sheaf % on X (See (10)). q.e.d.

§2. Weak 1-completeness and strong pseudoconvexity.

In this section, we prove the following

THEOREM 2. Let X be a complex manifold whose canonical line bundle Kx is negative
and let D, A be a domain on X and a closed submanifold of X with codimension v < n=
dim, X respectively.

() (i) D is weakly 1-complete with respect to &,
(i1) H.(D, 2)=0,
then D is Stein.
B (i) A is weakly 1-complete with respect to @,
(ii) Normal bundle Na of A is negative in the sense of Nakano,
(iii) H.(A4, 2)=0,
then A is Stein.

In particular, for case of »=1, we have only to require that line bundle Nj is
semi-negative.

ProoF of (o). Put Kp=Kx | p, where Kx| p is the restriction of Ky onto D. By
vanishing theorem and (ii), we obtain H*(D, @)=H?"(D, Q«Kp*)=0 for p >0 and
cr(Kp) ~ 0. From the previous consideration, there exists a strongly pseudoconvex C*-
function ¢ on D. Let A(¢) be a real valued C=-function of ¢ € R such that M) > 0, X'(¥)
> 0, X7(¢) > 0 for every ¢ ¢ R.

Put w(z)=(z)+ A (p(2)) for ze D, where we may assume &(z) = 0 for every z ¢ D,
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then ¥ is a C®-function on D and it is easily verified that (i) ¥ is a strongly
pseudoconvex C=-function on D (ii) D. = {zeD| ¥(z) < ¢} is relatively compact
in D for every ¢ > 0.

From Theorem 1 (@) (In this case, by using vanishing theorem : H'(D,., @#)=0 for
any ¢ > 0, we obtain the same result with Theorem 1 (o)), every D. is holomorphically
convex and has no positive dimensional compact analytic subset, hence every D. is
Stein. Now D= c\;ODC, D, CD. for ¢ > c¢>0, so D is Stein.

Proor of (8. Let {U;l;; be a defining covering of A and let (z,,0:)=(2},...,
2% 0i,...,00) be the local coordinates in U, such that ¢f=0 (1< £k <7) are local
equations of A in U, for every ¢ € . Then N, is represented by the covering |V},
where V;=U,n A for every i € L.

Let = Ny—A be the projection of Ny and (z;, &)=(zi,..., 277, &}, ..., &) be
the local coordinates in # (V)= V,x C” for every 7 ¢ I. By assumption, there exists a
hermitian metric {h.,=(h;,;) | ;; on Ny for this covering such that (7(n— 7),7(n— 7))-ma-
trix H;=(H;y,.p5 is negative definite everywhere. Put 2(z,, &)='¢:h(z)E on (V)
then % is a metric function on Ny along the fibre with constant zero on O4, where Oy is
the zero section of A in Ny and O4=A biholomorphic. The Levi form L (%) with

respect to (z;, &) is written as follows (where the subscript ¢ is omitted for simplicity).

L(n)=— 33 H,, 5t dzodz?

h _
+3 r® z —2 Az +zh ) gﬂdzﬂ-i-zh dgﬂ)

By# Z
By the negativity of (H;,mg) and the positivity of z,=(%;3), L(k) is positive definite on
—0y4. Put =@ oxz+h on Ny, then its Levi form L(¥)=L (@ o)+ L(k) with respect
to (z;, &) is positive semi-definite on Ny and clearly {y e Ny | &(y) < ¢} is relatively
compact in Ny for every ¢ € R. Therefore N, is weakly l-complete with respect to w.
Remarking KN = 7"(Ky)@r*(det N, ) "and Ki=Kx| 4&det Ny, where Ky and KN are
canonical line bundles of A and N, respectively, Kx | 4 is the restriction of Kx onto A,
hence we obtain Ky, =»"(Kx| 4). Now Ky is represented by {Kx, ;e for
U= {U,} ies. Since Ky is negative, there exists a metric {a;}, for U= {U,} ;g
such that the Levi form L(—log a.) is negative definite everywhere. Put k,; (z,) =Ky,
(2;,0), alz.)=adz; 0) on every V;n V; and V, respectively, then Ky | 4 is represented
by {ki(z;)};; and its metric is given by {a«z.)};;. In particular, in case r=1 if
holomorphic line bundle is semi-negative, since K =Ky |, ®N,;, we may assume that
K, is negative by the definition of the negativity of the line bundle. From Theorem 2 (a),
A is Stein. In case »> 1, put Az, t)=r"(alz.) exph(z,, ¢;) for every i €I, then
since KNA:n*(KX] 4)y {Aitieg is a metric on Ky, for the covering (Y (Vi s -
The Levi form L(-log A, with respect to (z, ¢;) is written L(-log »*(a.))—L(%), so

®»  For a detail, see (13].
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L(-log A ;) is negative definite everywhere. Therefore KNA is a negative holomorphic line
bundle. We define a continuous function H from N, x I onto N, as follows, where [ =
(0, 13 is the interval.

H(w, t)=(z(w), 1—-t)¢(w))

=(Uw), ..., 28" (w), A=ziw) , ..., A= 1)gi(w)).

Since transitibn functions for the local coordinates (¢;) are matrix functions, H is a
well-defined continuous function on Ngyx I. It is clear that H(w, 0)=identity on Ny,
H(w, 1)=x where r: N;— A is the projection. Therefore A is strongly deformation
retract of N,, so A and N, are homotopy equivalent, it holds that H,(A4, Z)= H Ny, Z)
for 0 < p < dimzA as the singular homology group. By the assumption, H,(N,, Z)=0.
Finally, the normal bundle N, satisfies the assumption of Theorem 2 (), hence N, is
Stein. Since the zero section Oy is closed in Ny and O4=A biholomorphic, A is
Stein. g.e.d.

ReMARK 1. In Theorem 2 (a),for case D= X, there exists a complex manifold which
satisfies weakly 1-completeness, the negativity of canonical line bundle and is not Stein.
For example C™x P" is so, where P" is n—-dimensional complex projective space. (In this
case, if we put M= C™x P", the canonical line bundle K is »*(K Pn) where 7 : M— P"
is projection and K ,, is the canonical line bundle of P”. Since the canonical line bundle
of complex projective space is negative, using strongly pseudoconvex C®-function
d(z)= Z z.:Z;, we can choose a metric on Ky such that Kj, is negative).

In passmg, 2nd homology group of C™x P”" does not vanish; H,(C™"xP", Z)=Z and
in relation to Therem 1 (8), H,(C"xP", Z) =0 and H'(C™"xP", 0)=0 by vanishing
theorem.

ReMark 2. In Theorem 2, H*(D, Z)=0 implies H,(D, Z)=0, but converses are not
always true, for H*(D, Z)=H,(D, Z)® Ext (H.(D, Z), Z) by universal coefficient
theorem. If H,(D, Z) has non-torsion groups, H,(D, Z)=0 implies H*(D, Z)=0.

ReEMARK 3. As mentioned in Remark 1, the canonical line bundle of complex projective
space is negative, but by Suzuki’s results (12], any weakly 1-complete domain on P” is
Stein. There exists a complex manifold which has the negative canonical line bundle
and does not satisfy the assumption of his theorem. For example C™x P" is so.
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