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the shift in the resonant frequency of a cavity and the change in the Q-value of a cavity
are measured together. When an electron concentration is low ( = #ne? / me, o*<<1),
the first order perturbation theory is good, because the plasma does not appreciably
disturb the electric field. When a density is increased, the electric field E in the pre-
sence of a plasma becomes appreciably different from E, in the absence of a plasma.
Then the following three effcts must be considered.
(4) drift of a plasma by Lorentz force in the presence of a magetic field.
(B) ac space charge (commonly called “plasma resonance” makes itself feel when 7
approaches unity, so called when the probing frequency approaches and it is equal to the
plasma frequency.)
(© when both 7 and the pressure are high enough so that the Q-value is lowered, the
overlapping of higher mode also causes E to be different from E,.

By proper method of design, the major effects (A) and (B) may be eliminated. (A)
As the magnetic field in the z-direction exists in our experimental device, if the distri-
bution of the electric field in a cavity has the electric field E, only in the direction of a
axis, the plasma is not caused to drift by Lorentz force. (B) This can be shown the-
oretically as follows, by combining Maxwell eq. with continuity eq. and assuming such
a harmonic time variations as exp (fwt).

—%—lel (1) divE =p/e (2)

From (1), —jwo = dive E

From (2), divE =dive E/( —jws) = div(l-K)E ;K= 1+d/jwe
= —grad K- E+(1-K)divE
divE = —grad K - E/K; K= f(n).

The eq. states that o will be zero when the applied electric field E is normal to the
density gradient. If therefore, by a proper experimental arrangement, this condition is
satisfied, the space charge effect will not limit the microwave cavity method from
measuring a high electron density. In our experimental device, an electron density
varies with radially directional position from a axis (grad ,#» # o). We selected TM,,,
mode from the above reasons. A cylindrical cavity that oscillates in the TM,,, mode
with a cylindrical plasma column placed along the axis of a cavity resonator, satisfies
the required condition. Furthermore, TM,,;, mode has large separation with the higher
modes?.

In the presence of a static Magnetic field, a plasma becomes an anisotropic medium.
As the result, a plasma conductivity is a tensor function of position and a dielectric
coefficient of a plasma is defined by the following tensor?.
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Fig. 1 Schematic diagram of experimental device
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where o2 = w2 /o, 8 = w/w ¥ = ve/w, and w: = ne® /meo, here n is a electron

density, w, = eB/m is a electron cyclotron frequency and . is a electron collision fre-
quency for momentum transfer.

For the TM, ., mode in the Absence of a plasmaV,

:E€=H7‘=0



12 Yoshio ENOMOTO, Masahiro ANDO, Sunao KAWASAKI, and Teiichiro YAGI

E, = Jolkir) = Jo (Xom 7/a)
Ho = —Jo (k17) = —Jo (Xon?/a),

where X,, = m* root of J, (x) =0 and ¢ is the radius of a cavity.
With the plasma present, the axial electric field is given by solving Maxwell eq. as
divkE =0,

2
%ff + 1 ddE; +k K.E.=0 ; 0<7<R

d’E.
d»?

+

}, dEZJrkZEz:o iR < 7 <a,

dr
where R is the radius of a plasma and 2 = w/c ; wis a resonant angular frequency.

The solution of above Maxwell eq. is given by
I:Aj Q'Z=77<1y7:0

E:=E, Jo(kKZr) + E'N, (RK'r) ;0 <7< R (3)
E. = AJ,(kr) + BN, (kr) s R<r<a (4)

In order to have the finite solution (3), £’ becomes zero. The electric field E, and its
derivatives must be continuous at » = R and E, must vanish at » = «. From abo-
ve-mentioned relations®

Nk
C= =T (5)
CTL(kR) + NokR) (kK2 )
CL(RR) ¥ Ni(RR) = K2, RKUZR)

Eq. (6) gives the equation for a resonant frequency.
Blf=9p=1 y=0
In the similar way as (A),

E.=E, I,(k/o> —1) ; 07 <R (7)

E,=A], (kr) + BN, (kr) ;R < 7r < a (8)

CJo (kR) + N, (kR) _ Iy (/& — 1R) (9)
CJi (kR) + N, (kR) ~ —/o*—11, (R/’—1R)

So that eq. (9) gives the equation for a resonant frequency, too.

In the limit of vanishing small plasma densities, K., = 1 and eq. (6) properly
reduces to J, (k) = 0, which is the characteristic equation for a empty cvity. Eq. (6),
(9) posses an infinite number of modes of TM,,, class. It was solved numerically for its
lowest root in terms of a dimensionless quantity kz. The vesonant frequency is also
given according to the electron density of a plasma. As a result, the relation between
the shift in the resonant frequency of a cavity and the electron density is given from eq.
(6) and (9).
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Then, the relation (6) and (9) are plotted in Fig.4~6 and the radius of a plasma is
put as a parameter, so—called plotted the resonant frequency of a TM,;,, mode cylin-
drical cavity as the function of the electron density of an axially located plasma, and in
Fig. (7), (8) is plotted the electron density as the function of the shift in MHz unit of the
resonant frequency of a TMy,, mode, where the radius of a cylindrical cavity is 2.98 cm.

3. Probe theory in the presence of a magnetic field

The electron concentration of a plasma is got from the electron current near the
space potential.

In the case of a plane probe, it can be shown that the number of electrons striking 1
cm? per second of a solid plane parallel to a magnetic field B decreases as B rises, and
the electron current near the space potential is given by the following equation®,

j _ nv 8+ (w7 {1-— exp(~ 27 /wt}

e ! 2 14 + (w?} ’

where j is a current density near the space potential, ¢ is a charage of electron, 7 is a
mean collision time, v is a mean radon velocity /~ 37 ./m (m is an electron mass and
T, is an electron temperature), and w is a cyclotron angular frequency.

The magnitude of a electron current near the space potential is given by Bohm,
Burhop, and Massey for a probe of arbirary shape®,

]va(K+ Sv

-1
e 4 16 =/ «CD "

where K is a constant (K = 1), S is a pobe surface area, ¢« = D, /D= 1/(1+ ), D
= Av/3, A is a mean free path along a magnetic field, C is a capacity of probe, and D,
D, is a difusion coefficient along and across the field. In the case of a spherical probe,

b=a+ n~a

d=JVala+ )~/ al

where ¢ is the radius of a spherical probe and #; is Lamor radius. And

_ d(]. _p2)1/2 . . b

C= tanh“(l _p2)1/2 ) 17 - d =1
_ d(p* — 1) . _b

C= tan—1(pz —1 )1/2 ;D= d z1

These formulas give the saturation electron current at a small positive potential under
the assumption that 7; << 7T, that orbital motions can be neglected in the free — fall
region, and that quasi-—neutrality obtains elewhere.
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4. Experimental apparatus

The experimental apparatus used now is schematically shown in Fig.l. A plasma
generated by the plasma source placed at the left end flows into a vacuum chamber
through the hollow anode of the plasma source and the vacuum chamber is made of
Pyrex glass.

Solenoidal coils placed outside the vacuum chamber produce d.c. magnetic field.
The intensity of the magnetic field is varied from 0 to 600 Gauss.

Helium gas is supplied into the central region of the vacuum chamber from a gas
bombe through a leak valve in the left end. The pressure of the arrangement is varied
in the range from 107° to 107! Zo7r and the lowest attainable pressure is in the range
of 10~ Torr.

The magnetic field intensity as the function of a position along the linear machine is
shown in Fig.2 (theoretical value), where C, ~ C, denote the positions of coils. And
Fig.3 denotes the experimental value of the magnetic field intensity in our experimental
device.

The cylindrical cavity is made of brass. We made holes on the axis of it and
covered these holes with wire net. The wire net arrests the lowering of the Q-value.
We put the cavity at P in the vacuum clamber, then the beam plasma passes through
the cavity. The shift of the resonent frequency of cavity is measured by a spectrum
analyser.

5. Experimental results

The radial density variation in a plasma column is measured by a radially movable
probe at P in the vacuum chamber, whose width of a half value is about 2 cm in spite
of the kind of probe used in the measurement.

The probes used are disk, plane, spherical and cylindrical probe. Each probe is

I,=0.5A =
P=5X10"Torr  J—9A
L=3A B=200 Gauss
L(mA)
L b Vo

10

tan a=e/xTeX2.303
xTe=10.1eV

—40 0 0 vV

Fig.9 Probe characteristic (spherical probe)
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consisted of a tungsten electrode and a tungsten wire (0.5 mm diameter) and the
tungsten wires are all sheathed in glass. The radius of the disk probe is | mm and the
thickness of it is 0.5 mm. The plane probe is sheathed by a glass except for the circular
part of the disk probe and the radius of it is 1 mm. The radius of the spherical probe
is 1 mm. The cylindrical probe is made of turgsten wire and the radius of the elec-
trode is 0.5 mm and the length of it is 1 mm.

We neasured probe characteristics by using a X-Y recorder or a synchroscope, but
we mainly used a X-Y recorder. One example of a probe characteristic is shown in
Fig.9. I, is electron current. Electron temperatures 7. are about 10¢V in spite of the
kind of probe from probe charateristics. Space potential V, are about 5V in these
probes.

The radius of a cylindrical cavity is @ = 2.98 cm and the length of it is L = 5.00 ¢,
so that the resonant frequency of a cavity is 3.84 GHz. The microwave cavity method
gives information averaged over the radius of a plasma R = 1.5mm. We put in the
input to a cylindrical cavity by a rod antenna and received the output by a rod antenna
too. We set both of them symmetrically at » = 1cm pdints from the cetral point.

The effect of a magnetic field or a discharge current I, or a Helium gas pressure
for measured electron densities is shown in Fig.10, Fig.11, and Fig.12. Here, a cylin-
drical probe is plotted without taking account of the effect of a magnetic field.

In the first place, an electron concentration versus a discharge current I, is shown
in Fig.10. The microwave cavity method and the probe method agree within the exper-
imental errcrs in spite of the form of an electrode besides the cylindrical probe, where P
=5 x 1072 Torr and B = 200 Gauss.

In FiG.11, an electron density versus a magnetic field is shown. The probes are in
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Fig. 10 Electron density versus discharge current Fig. 11 Electron density versus magnetic field
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agreement with the microwave cavity method in the region where B =< 480 Gauss
within the experimental errors besides the cylindrical probe, so that the probe theory in
a magnetic field holds in the region of this measurement where P = 5 x 1072 Torr and
I, = 05A4..

Fig.12 shows the relation of an electron density versus a Helium gas pressure at a
particular condition. The spherical probe is in agreement with the microwave cavity
method within the experimental errors through the whole region of pressure. But the
plane probe fairly differs from the microwave cavity method in the region from 2 x
10~* to 10~2 Torr. On the contrary, in the region from 10°2 to 10~ 7orr the probe
theory in a magnetic field holds in spite of the shape of an electrode. The cylindrical
probe gives a very smaller electron density than that measured by the microwave cavity

method as a matter of course, because the effect of a magnetic field is not taken
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account of.

As the result of trying a cross sheck by the microwave cavity method, a spherical
probe is in relatively good agreement with the microwave cavity method and so the
probe theory for a spherical probe in a magnetic field holds though this probe theory
neglects electric fields and orbital motions and is valid only for » T, >> x7T; Also the
theory of a plane probe in a magnetic field which is derived for an infinite plane probe
is not strictly applicable.

6. Conclnsions

We compare the electron densities measured by the disk, plane, spherical, and cylin-
drical probe with that measured by the microwave cavity method. Cylindrical probe
gives a very smaller electron density than that measured by the microwave cavity
method as is expected, because the effect of a magnetic field is not taken account of.
The probes besides a cylindrical probe agree with the cavity method in spite of the
strength of a magnetic field (B < 480 Gauss) in the ceration region of the higher
Helium gas pressure. But when we compare the electron densities in the wide region of
Helium gass pressure, only the spherical probe agrees with the cavity method. There-
fore, it becomes evident that the theory of a spherical probe in a magnetic field gives us
the most confidence.
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