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Abstract Peierls transition in one-dimensional electron-phonon systems is studied
by renormalization group method, considering logarithmic terms up to the next
divergent corrections. The results are applied to predict power low behaviors in

various response functions.
§ 1. Introduction

Peierls transitions which are drived by the Kohn anomaly in phonon spectrum have
been much interested. In a recent work, in paticular, Suzumura and Kurihara? found
that the critical anomalies of phonon spectrum and other quantities in a one-dimensional
model would be characterized by a universal power law near the absolute zero
temperature. Their method was based on a self-consistent (renormalized) random phase
approximation but the results are very similar in form to those predicted for interacting
electron systems by the method of renormalization group (RG).2*%

Such a considerable resemblence between the two problems of the electron-phonon
and the interacting electron systems becomes particularly clear when we notice the
algebraic structures of the perturbation series being characterized in common by
logarithmic singularities. In another words, the present matter is analogous to the
problem of the infrared catastrophe linked with the Fermi discontinuity of an electron
gas.”

~ The purpose of the present paper is to apply the RG method to the phonon softening
problem for one-dimensional electron-phonon systems described by the model similar to
that studied in Ref.1. Not only the phonon spectrum but also the pairing susceptibilities
and other electronic responses are studied.

Since the effective electron interaction caused by exchange of Debye phonons, in a
naive sense, is of attractive nature it can be guessed from the suggestions of Refs. 2 and
4 that the present system would also asymptotically be carried over into an essentially
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strong coupling regime at low temperatures, no matter how weak the bare coupling
were. The cross-over from an initially assumed weak electron-phonon coupling to the
strong coupling regime should be taken place continuously at about a mean field Peierls
transition temperature 7,. Below this temperature we have not any small parameter of
the problem near the Fermi level, even if the bare coupling constant is considered to be
arbitrary small. Strictly speaking, in this asymptotic region any attempt based on
perturbation theories would lose its rigorous basis. However, in so far as sufficiently
reliable solutions for the problem have scarcely been available it is worth while to carry
out an improved perturbation analysis which would serve us to suggest the paticular
features of the critical anomalies inherent in the present model.

The present paper is outlined as follows. In Sec. 2 we formulate the problem with
the help of RG method. In Sec. 3, as the first order theory, the phonon self-energy is
considered. In this approximation the results are found to be the same as those of the
mean field theory."’ In Sec. 4 the next order correction, the electron self-energy, is
considered. Then, relying upon the formal solution for the invariant coupling various
quantities are predicted in the form of power in energy or temperture scaled by 7,. In
particular, the Cooper-pairing susceptibility and the density response at 2pj diverge at
T=0. The part of the results agrees with those of Ref. 1. In conclusion (Sec.5) the
behavior of other physical properties are discussed and the role of long wave length
phonon is also examined briefly.

§ 2. Description of the model and RG method

The system under consideration is the one-dimensional electron-phonon system
characterized by the interaction ;"

H, ﬁ:ng £aq {C;eqa Cpa(d:ri"‘d J+c cl (2-1)

where ¢*,, (¢0) is the creation (annihilation) operator for an electron with momentum b
and spin component ¢. d; is the phonon creation operator with momentum ¢. The
model is similar to that considered in Ref. 1. Since we are interested in the role played
by the phonon with momentum near 2py it can be assumed that the coupling constant g
and phonon frequency w, are independent of momentum acting within some range D of
energy.

Now let us write the Green’s functions and vertex function as;

I'®)=gT®/D, D, g
G()=d.®/D, D, g) Go(p) (2-2)
D@)=d,®/D, D, g) D,(p)
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where p denotes frequency and momentum arguments. The renormalization group for
this model is defined by a conventional way : For an arbitrary change of energy scale
the electron and phonon Green’s functions G and D, the e-p vertex and the coupling
constant g are multiplied by constant ;

dl“’ZT1 d,, d,—>Z3*d,, 1:—>Zgz ﬁ: g_’Z4g (2_3)

The invariance under transformation (2-3) implies that the multiplicative constants Z;
are subject to a relation; Z,=7,Z,Z;. This argument suggests that the proper choice of
invariant coupling (IC) is

W, A=A d3 (x,A) do(x, DD, A) (2-4)

where x is a characteristic energy of problem defined in the next section, and A= — vrg?
(vp is the density of states at the Fermi energy).

Then we can follow the usual procedure to get various renormalized quantities
which was explained in detail in the preceding contexts.?®**

Actually in performing calculation some complexity arises because the problem
involves two different cut-off parameters, i.e. the electron band width of the order of Ej
and cut-off in the phonon momentum p. multiplied by electron velocity ». However,
since p. is of order of the Fermi momentum it is sufficient to assume, within
logarithmic accuracy, only a single cut-off parameter D to represent the order of Ej
and vp..

§ 3. First order renormalization

Let us study the first order renormalization. The first logarithmic correction arises
from the polarization function of 2p; phonon as shown in Fig. 1. It is expressed as

(w.k)=2¢" 5— 3 [ dp Golpt-5) Golp—-5) (3-D
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Fig. 1 Phonon self energy.
Wave line represents phonon with momentum near 2pg.
Solid line represents electron with momentum ~ pp.
Broken line represents electron with momentum ~ —pr.

* In these literatures the method by the Lie equation have been used exclusively. However, it can
be easily shown that a different formulation by the Callan-Symansik method leads to the equivalent
results.
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This is a logarithmic integral in the arguments w, 2 and 7T where k' =k+ 2kp.
If | wxok | > T we obtain

(k)= 3 vpg? {In 22 —i oc?)] (3-2)

where x2= | *—(vk')* | /D% If w+vk’ > T, x? in logarithm is replaced by 7%/D? and
the sharp discontinuity in the imaginary part represented by 4(x?) is smeared out with a
tail, extending up to the point w=7%"=0. '

Using this correction as the input we have the Lie equation for IC as;

Y e (3-3)
ox

which solves to yield
=/ 11 A(nx—- 76 G2 (3-4)
If w=%k"=0 this function diverges at temperature 7,, where
T,=D exp(—=1/1 A|) (3-5)

This is just the Peierls transition temperature predicted by a mean field theory.®

§ 4. Next order renormalization

In the next order approximation, we must take into account the electron self-energy
correction, shown in Fig. 2. It is expressed as

E(e,p):—(—g;*)2 Zfdka’q’ Go(0—k) Go@') Golg’ +k) D? (k) (4-1)

where Do(wk)=— oFo/(?+ o)

The calculation of (4-1) is straightforward but tedious. However, the argorithm is
considerably simplified if we notice that the integration is dominated by the contribution
from the low frequency phonons with w <<w,~wp. Thus, it is sufficient to appro-
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Fig. 2 Electron self energy.
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ximate by Do(w, k)~ —1 in order to estimate correctly the dominant logarithmic term.
Then it becomes

S(eb) —kg' vy G3' () LIna—ind (), if |e2(p)| > T (4-2)

where x'2= | &—(vp')* | /D* with p'=ptpp. At finite temperatures the
argument made in Sec. 3 about the behavior of II holds also for (4-2) as well.

Together with Eqgs. (3-1) and (3-2) this gives the Lie equation ;

x90Y 1

gzl 3 4
x Vs W (4-3)
and the solution;
In x=F(V)— F{x)
F(p)=~1/U++In| (v+2)/ v | (4-4)

(See Fig. 3) The curve for ¥(x) displays a smooth behavior and tends to the fixed point
—2 as ¥—0. Note that the electron self-energy term on the right hand side of Eq. (4-3)
is always negative for the present case (i.e. ¥<0), and therefore, it counteracts to
suppress the singular growth of IC due to the first term.

The Lie equations for &, and d, are

xaix In dlz—i— P2 “ (4-5)
-2 Ind,=v (4-6)
0x
AV 0
10” 19" s x
A
-1

]
;o
-2
! ]
?
Fig. 3 Graph of the invariant coupling.



82 Makoto KONIsHI and Minoru KIMURA

The solutions of Egs. (4-5) and (4-6) are found in the form;

d,()=x| V@) A" exp (1/ V(x)—1/A) (4-7)
d,(x)=x *exp 2(1/ A—1/ V(x) (4-8)

As x—0, these solutions behave asymptotically as

G=G, e |2In (T, /D)|* % (4-9)
D=D, e % (4-10)

where x=(o?*—(p')*)"?/T, or T/T,. Eq. (4-10) implies the softening of phonon
spectrum at wave vector of 2pr. Note that the scaling parameter for these asymptotic
expressions is 7, instead of the original cut-off energy D.

Using the form of electron Green’s function (4-9), the density of states u(w)/ vy for
the electron can be written asymptotically as

) vp= o/ Ty (4-11)

The result is quite similar to that of Suzumura and Kurihara.” Note that for
commensurate case the vertex correction arises in the first order renormalization which
would strongly affect the property of the system as discussed in Ref. 1.

Now, let us consider the anomalous responses of the system. In addition to the
Peierls instability we should expect that the system would exhibit various types of
electronic instabilities. Here we examine the critical behavior of the fluctuations of
singlet and triplet Cooper pairing, staggered spin- and charge-densities with 2pz
momentum. Their definitions are given in Ref. 4. The perturbational expansion for
these quantities is written as;

o
. .
Yo ae? Ca e

Here omitting detailed derivation we immediately write down the following equations
for them
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d_yn TS — 1y -1
X 5’{_ In [l = 4+ ) Wy (4 12)
x 50; In (7 = —y+b (4-13)
2 I B
X —‘a’xf In X = 2 % (4 14)
x 9 InN = 2p+lye (4-15)
ox 2
where the quantities with a bar (I1 etc.) are the three pole vertices related to each
responses, defined by ﬂ(x):%lll?—(;)--, and so on. The asymptotic expressions are obtained

in the form;

IS(w,k) oc ypIn X, y(whkt2pe)ocx?
N7 (wk)ocxt , Nwkt2pp)ocx? (4-16)

In the limit x—0, N tends to diverge, [I7 and y to converge to cusp minimum. The
logarithmic singularity obtained for IIS is due to the casual cancellation of the first and
second order corrections leaving only the zeroth order anomaly inherent in a 1-D free
electron system.

In the same way the long wave length susceptibilities*® can be obtained. Here
we write down only the results

Nlwk) ~ No(whkx.
Wwk) ~ xolwk 4-17)

These quantities do not diverge, as it should be.
§ 5. Discussions and Conclusions

Here we briefly consider the role of phonons with long wavelength.  Since
calculation can show that the corrections due to these phonons are also logarithmic but
the effect is reduced by the small factor of m/M, where i is the mass of the electron
and M of the ion.'® Repeating the manipulations as in the preceding sections we
find that the magnitudes of IC and the exponents for the power of various quantities
are shifted only by small amounts of order (m/M)g?. Therefore, all the conclusions
above derived hold without an essencial change.

Now, it is interesting to comment on the imaginary parts of the various response
functions obtained in the preceding sections.® In simulating them with the imaginary
parts in the perturbation expressions (3-1), (3-2) and similar forms for response
functions (which were explicitly not written down) we can easily obtain the imaginary
parts of the renormalized functions. The remarkable feature of the imaginary parts thus
obtained is that they have the sharp edge at w==+ | vp | . For example, from the power
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law F(w,k)oc(x/T,)? (see Sec. 4) we obtain
Im F(wk)ocot) (i) T,)°

These arguments are applied to predict the characters of some other physical properties.
For example, the electron transport life time by impurity scatterings with a potential U
and concentration ¢, which is expressed by,

/z=lim (c/w) U?*v? 3 (p—p’) Im NB,p’, w)
w0 by’

should increase anomalously according to Egs. (4-16) and (4-17). Thus the system
becomes insulating at low temperatures.

In summary we would like to emphasize the following ;
a) The problem of one-dimensional electron system asymptotically carried over to the
strong coupling regime. The characteristic temperature determined by W(7)~1 is the
mean field transition temperature 7.
b) If we rely upon the formal solutions the Green’s functions of electron and phonon and
also pairing and staggered response functions are characterized by the power form with
energy (temperature) argument scaled by 7,. Although these agree qualitatively with
those of Ref. 1, the numerical results for the exponents can not be taken literaly because
of the strong-coupling nature of the problem.
¢) The vanishing of the density of states at the Fermi energy according to Eq. (4-11)
implies break-down of the Fermi liquid theory. Analogous situations have been known
in contexts of many other infrared problem.?*®

Fig. 4 Graph of a contribution g*"In*x.

Finally we should remark a drawback in the present work that it fails to take into
account some sort of graphs with the same order of divergences as exemplified in Fig. 4.
The difficulty arises because the perturbational scheme of the renormalization enables
to treat only the hierarchy of terms which are generated by repeating primitive
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divergences in the form g?"Inx. For example, the graph in Fig. 4 gives a contribution g2"
In*x and thus it does not give rise to any generating term.
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