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Abstract Peierls transition in one-dil11ensional electron-phonon systel11s is studied 

by renorl11alization group l11ethod， considering logarithl11ic terl11S up to the next 
divergent corrections. The results are applied to predict power low behaviors in 

various response functions. 

S 1. Introduction 

Peierls transitions which are drived by the Kohn anomaly in phonon spectrum have 

been much interested. In a recent work， in paticular， Suzumura and Kurihara1) found 

that the critical anomalies of phonon spectrum and other quantities in a one-dimensional 

model wouldbe characterized by a universal power law near the absolute zero 

temperature. Their method was based on a self-consistent (renormalized) random phase 

approximation but the results are very similar in form to those predicted for interacting 

electron systems by the method of renormalization group (RG).2，3，4) 

Such a considerable resemblence between the two problems of the electron-phonon 

and the interacting electron systems becomes particularly clear when we notice the 

algebraic structures of the perturbation series being characterized in common by 

logarithmic singularities. In another words， the present matter is analogous to the 

problem of the infrared catastrophe linked with the Fermi discontinuity of an electron 

gas.5) 

The purpose of the present paper is to apply the RG method to the phonon softening 

problem for one-dimensional electron-phonon systems described by the model similar to 

that studied in Ref.l. N ot only the phonon spectrum but also the pairing susceptibilities 

and other electronic responses are studied. 

Since the effective electron interaction caused by exchange of Debye phonons， in a 

naive sense， is of attractive nature it can be guessed from the suggestions of Refs. 2 and 

4 that the present system would also asymptotically be carried over into an essentially 
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strong regime at low temperatures， no matter how weak the bare 

were. The cross-over from an assumed weak electron-phonon couplin反 tothe 

strong regime should be taken at about a mean fjeld Peierls 

transition temperature ・ Belowthis temperature we have not any small parameter of 

the prob1em near the Fermi even if the bare coupling constant is considered to be 

arbitrary sma1!. Strictly in this region any attempt based on 

perturbation theories would lose its rigorous basis回 Hovvever，in so far as sufficiently 

reliable solutions for the have been available it is worth while to carry 

out an which would serve us to suggest the paticu1ar 

features of the critical anomalies inherent in the present model 

The present paper is outlined as follows. In Sec. 2 we formulate the with 

the of RG method. In Sec. 3， as the first order theory， the self-energy is 

considered. 1n this the results are found to be the same as those of the 

mean fjeld 6) 1n Sec. 4 the next order the electron self-energy， is 

considered. Then， relying upon the formal solution for the invariant coupling various 

are predicted in the form oI power in energy or ternperturεscaled by 丸。 In

particular， the Cooper-pairing and the density response at 2PF diverge at 

T =00 The part of the results agrees with those of Ref. L In conclusion 5) the 

behavior of other physical 

phonon is also examined briefly. 

S 2. 

are discussed and the role of wave 

of tlhe modei and RG meUwd 

The system under consideration is the one-dimensional electron-phonon system 

characterized the interaction ;7) 

He ρ 二三 gqlC j;~qσCρσ 十 d q}+ Cヲ Ci 
1''1σ 

(2-1) 

where c+"σ(c I'r，) is the creation operator for an electron with momentumρ 

and spin componentσ② is the phonon creation operator with momentum qo The 

model is similar to that considered in Ref. 1. Since we are interested in the role 

the phonon wIth momentum near 2戸'Fit can be assumed that the coupling constant g 

and 

energy. 

立)0are of momentum within some range D of 

N ow let us writεthe Green's functions and vertex function as ; 

町長i)=gf'伝/D， D， g) 

G(向=dj (p) 

D信j二 (P/D， g) D。ゆj

(2-2) 
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where p denotes frequency anc1 momentum arguments. The renormalization group for 
this model ls c1efinec1 by a conventional way: For an arbitrary change of energy scale 

the electron anc1 phonon Green's functions G and D. the e-p vertex and the coupling 

constant g are multiplied by constant ; 

d1→ Zjl d j • d2→Z，，" d2， ]'→Z:;2 r， g→Z4g (2-3) 

The invariance under transformation (2-3) implies that the multiplicative constants Z， 
are subject to a relation ; Z"ニZlZZZ3・Thisargument suggests that the proper choice of 

invariant coupling (IC) is 

W(x，λ)= ;¥ d~ (x，;¥) d 2λ) f'(x， ;¥) (2-4) 

where x is a characteristic energy of probIem definec1 in the next section， and /¥ = ~ UFg2 

(UF is the density of states at the Fermi energy). 

Then we can follow the usual procedure to get various renormalized Cjuantities 

which was explained in detail in the preceding cont目玉tS. 2 • 3 • 4 ) ネ

Actually in performing calculation some complexity arises because the problem 

involves two different cut-off parameters， i.ε. the electron band width of the order of EI.' 

and cut-off in the p11onol1 momentum 1うcmultiplied by electron velocity v. However， 

slllce ρc is of order ofthe Fermi momentum it is sufficient to assume， within 
logarithmic accuracy， only a single cut-off parameter D to represent the order of EF 

and vPc・

S 3. First o:rder renormalization 

Let us study the first order renormalization. The first logarithmic correction arises 

from the polarization function of 2Jう'1'phonon as shown in Fig. 1. It is expressed as 

II( w，k)=ぜっlzjdρ Gdp十左)Go(Pーも
ム庁 d ム ム

nヱイ(〉
Fig. 1 Phonon self日nergy
Wave line repres巴ntsphonon with momentl1m n巴ar2ρF 
Solid lin巴repr巴sentsel己ctronwith momentum ~戸F

Broken line represents巴!日ctronwith momentum ~一戸F

(3-1) 

*> 1n these literatures the method by the Li白 equatiol1have bεen l1sed exclusively. However. it cal1 
bεeasily shown that a different formulation by the Callan-Symal1sik method leads to the equivalent 
results. 
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Th~ is a ~tεin the arguments ω， ，7' and T where l?' = k:t 

If Iω土vk'I >> T we obtain 

II 寸 Up 11げ一片的Z)l

where x2 = I u} - I / D2. Ifω:t vk' >> x2 in logarithm is replaced T2/ D2 and 
the sharp discontinuity in the part represented 6 is smeared out with a 

tail， up to theωニル=0，

Using this correction as the input we have the Lie equation for IC as ; 

which solves to 

θw ワ

x-- ¥V" 
aX 

い山一λflnx-÷d州!

Ifω=k'=O this function diverge日attemperature where 

ニ Dexp( -1/ I i¥ I ) 

This is just the Peierls transition temperature predicted by a mean field theory，6) 

~ it N ext order r坦E山

In the nex t order we nmst take into account thεelectron 

shown in 2. It is as 

(pーん:)G。向1')G。向'十k)

where Do ニ-c.lo/(u}-jω2oj 

The calculation of (4-1) 18 but tedious. However， the 

(3-4) 

(3-5) 

(4-1) 

1S 

simplified if we notice that the integration is dominated by the contribution 

from the low fr冒eauencvohonons ¥lvith ωくくω。~ωD' it i8 sufficient to appro-

;:2Jココし
Fig. 2 Electron self energy 
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ximate by Do(ω， k)~ -1 in order to estimate correctly the dominant logarithmic term. 

Then it becomes 

"2lE，P)ード4JFGUJ (E，P) llnx"-irdJ(.y，'2)f， iflcL(VP')1 >>T (4-2) 

where X'2ニ IE2 - (vρ')2 I / D2 with ρρ±戸'F' At finite temperatures the 

argument made in Sec. 3 about the behavior of rr holds also for (4-2) as well. 
Together with Eqs. (3-1) and (3-2) this gives the Lie equation ; 

θq; .T.? ， 1 
X一一一=¥];2 +~ q;3 
ax ~ 

(4-3) 

and the solution ; 

ln x= f( iJ! )-F(x) 

F(iJ!)ニ川+すlnI仰十2)/q; I (4-4) 

(See Fig. 3) The curve for iJ!(x) displays a smooth behavior and tends to the fixed point 

2 as x→ O. Note that the electron self-energy term on the right hand side of Eq. (4-3) 

is always negative for the present case (i.e. iJ! < 0)， and therefore， it counteracts to 
suppress the singular growth of IC due to the first term. 

The Lie equations for d 1 and d 2 are 

x-L ln d1斗_¥];2 
ax Lf 

x-立← lndフ=iJ!
ax 
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Fig. 3 Graph of th巴invariantcoupling. 
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The solutions of Eqs. and are found in the form ; 

d1(x)=x 1ψ似1/̂  1l!2 exp (1/ψ1/人j
dztEjニ X 2 exp 2(1/λ 1/守かが (4-8) 

As x→0， these solutions behave as 

G= e112 121n 1112支

D= e亙 2

where主=(d -(Vp')リ1/2/芯 or Tp. (4-10) the softening of 

spectrum at wave vector of Note that the parameter for these asymptotic 

expressions is Tr， instead of the original cut-off energy D. 

Using the form of electron Green's function the of states UF for 

the electron can be written as 

νFニ乙 ω/丸

The result is quite similar to that of Suzumura and Kurihara図1) N ote that for 

commensurate case the vertex correction arises in the first order renormalization which 

would affect the property of the system as discussed in Ref. L 

N ow， let us consider the anomalous responses of the system. 1n addition to the 

Peierls instability we should expect that the system would exhibit various types of 

electronic instabilities. Here we examine the critical behavior oI the fluctuations of 

singlet and triplet pairing， staggered spin-and charge-densities with 2)うF

momeロtum. Their definitions are 

these is written as ; 

in Ref. 4. The perturbationa! expansion for 
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for them 

detailed derivation we immediately write down the following equations 



!(t'llorm乱liz日t1011じrouυTh出)ryuf l'eierls '1、rans1t1on
in On巳υimensiunalEleclron l'hOlloll SyはじJllお

I1-11111月二 lドトJ，¥v'
ぴλ L

x i) ln[[1' ψ十-A-¥jJe
δ;ピ L

立与 lnt =LKU2 
川

X 1111N=21V十A-¥jJ'
にIX {， 
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(4-12) 

(4-13) 

(4-14) 

(4-15) 

where the quantities with a bar (ll etc.) are the three pole vertices related to each 
eill(x) responses， definεd by ll(りニ ， and so on， The asymptotic expressions are obtained 

in the form ; 
eilnx 

1I吋叫んjανFln i ， Xイω，k土2tp)cて，ド

I1 1'(ωp削cζ炉 ， N(ω)，士2ん)cxi' (4-16) 

1n the limit x→0， N tends to diverge， [] T and X to converge to cusp m1l11mUm， The 

logarithmic singularity obtained for []S is due to the casual cancellation of the first and 

second order corrections leaving only the zeroth order anomaly inherent in a l-D free 

electron system. 

In the same way the long wave length susceptibilities"，81 can be obtained. Here 

we write down only the results 

N(ω.k) ~ No(uJ，!，)i 

x(ω，k) ~ Xo(ω.k) 

These quantities do not cliverge， as it should be. 

~ 5. Discu.ssions and Conclusions 

(4-17) 

Here we briefly consider the role of phonons with long wavelength. Since 

calculation can show that the corrections due to these phonons are also logarithmic but 

the effect is reduced by the small factor of m/ M， where m is the mass of the electron 

and M of the ion.10I Repeating the manipulations as in the preceding sections we 

find that the magnitudes of 1C and the exponents for the power of various quantities 

are shifted only by small amou日tsof order (rn/ M)g2. Thi:orefore， all the conclusions 

above derived hold without an essencial change. 

N ow， it is interesting to comment 011 the imaginary parts of the various response 

functions obtained in the preceding sections.81 1n simulating them with the imaginary 

parts in the perturbation expressions (3-1)， (3-2) and similar forms for response 

functions (which were explicitly not written down) we can easily obtain the imaginary 

parts of the renormalized functions. The rεmarkable feature of the imaginary parts thus 

obtained is that they have the sharp edge at ω=士 Ivρ1.For example， from the power 
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law cx a Sec 4) we obtain 

1m cxθ(Y/α 

These arguments are applied to predict the characters of some othεr 

For example， the electron transport iife time impurity scatterings with a 

and concentration c， which is expressed by，91 

1/τ=lim (c /ω，) U2V2 2: 印 1m
ω→0 β，T' 

should increase anornalously 

becomes insulating at low temperatures固

In summary we would Iike to 

to Eqs. and 

the following ; 

Thus the system 

a) The problem of one-dimensional electron systel11 asymptotically carried over to the 

strong The characteristic temperature deterl11ined ~ 1 is the 

l11ean field transition 

b) If we rely upon the formal solutions the Green's functions of electron and phonon and 

also pairing and staggered response functions are characterized the power form with 

energy (temp巴 argUl11entscaled by Tp • Although these agree qualitatively with 

those of Ref. 1， the numerical results for the exponents can not be taken literaly because 

of the strong-coupling nature of the 

c) The vanishing of the of states at the Fermi energy according to Eq園 (4-11)

implies break-down of the Fermi liquid Analogous situations have been known 

in contexts of many other infrared 2，4，5} 

Fig. 4 Graph of a contribution g'勺n2x

Finally we should remark a drawback in the present work that it fails to take into 

account some sort of graphs with the same order of divergences as exemplified in Fig， 4. 

The difficulty arises because the perturbational scheme of the renormalization enables 

to treat the hierarchy of terms which are generated repeating 
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divergences in the form g2nlnx. For example， the graph in Fig.4 gives a contribution g2n 

ln2 x and thus it does not give rise to any generating term. 

Acknowledgments 

The authors are grateful to Dr. Y. Kurihara and Dr. Y. Suzumura for informing their 

work before publication. 

References 

1) Y. Suzumura and Y. Kurihara， Progr. Progr. Theor. Phys. 53 (1975)， 1233. 

2) N. Menyhard and ]. Solyom， Journ. Low Temp. Phys. 12 (1973)， 529 

3) ]. Solyom， Journ. Low Temp. Phys. 12 (1973)，547. 

4) M. Konishi and M. Kimura， Progr. Theor. Phys. 52 (1974)， 353. 

M. Kimura， Progr. Theor. Phys. 53 (1975)， 955. 

5) A. Zawadowskii， Nobel Symposium XXIV Sweden， June (1973). 

6) M. ]. Rice and S. Strassler， Solid State Communication 13 (1973)， 125. 

7) H. Frohlich， Proy. Soc. A 223 (1954)， 296. 

8) M. Kimura and H. Fukuyama， Solid State Communication 17 (1975)， 381. 

9) H. Fukuyama， T. M. Rice， C. M. V巴rmaand B. 1. Helperin， Phys. Rev. B 10 (1974)， 3775. 

10) This was pointed out for the vertex correcttions by A. M. Afanac'ev and Yu Kagan， Zhur. Eksp. 

i Teor. Phys. 43 (1962)， 1456. 

.， 




