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Abstract It is proved from the substantialistic point of view that difficulties
inherent to the quark model can be removed by introducing nine urbaryons which
constitute the basis of SU(3)xSU’(3) group. It is shown, also, that the assignment of
electric charges to the urbaryons is not unique and a variety of models, including
colored quark model and Han-Nambu model, can be accomodated in the scheme
presented here.

§ 1 Introduction

The three-triplet model is an old topic but it has become of reviviscent importance
in relation to recent investigations on deep inelastic collisions. The three-triplet model
was introduced by different authors??®%% from various motivations. The motivations
can be summarized as follows;

A) the requirement of integral charges.

It is well known that the quarks should have fractional charges. We can assign
integral charges to the urbaryons in the three-triplet model. However, the charges of
the urbaryons can be integral also in the two-triplet model®. Moreover, it is not clear
yet, whether the problem of fractional charges is really perplexing or not. I believe that
merits of the three-triplet model should be found elsewhere.

B) the problem of statistics.

In the non-relativistic quark model or in the SU(6) x O(3) theory, the three—particle
ground state of the urbaryon should correspond to basis of the 56-dimensional
representation, so that the state must be symmetric with respect to the space, spin and
unitary spin coordinates. This is contradictory with the assumption that the spin of the
quarks is one half, as far as the quarks obey the conventional statistics. In order to
solve the contradiction, we have only to assume that the quarks obey the parastatistics,
or that the quarks have a new degree of freedom, so that the three-particle ground state
become antisymmetric with respect to the new degree of freedom. It was shown” that

* Lecture delivered at Kanazawa Summer School, held at Jike, Noto, Ishikawa Prefecture, August
1973.



26 Shoichi HORI

in the case of parastatistics, one is led to the almost same result as the three-triplet
model, if one uses Green representation, assuming that a quark is a parafermion of
order 3.

C) that the hadrons are non-exotic.

The hadrons which belong to 1, 8 and 10 dimensional representations of SU(3)
group, are observed, while the hadrons belonging to 3, 6, 15, . . . dimensional repre-
sentations, are missing. In terms of the quark model, three quarks (gqq), a quark and
an antiquark (¢g7) can be bound, whereas two quarks (¢gq), two quarké and an antiquark
(9qq) remain unbound.
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Fig. 1

Tati® considered that a quark has bonds as shown in Fig. 1 (a), so that only three
quarks can be bound as illustrated in Fig. 1 (b). This can be realized mathematically, if
one assigns new spin (=1) as a new degree of freedom to the quarks and assumes that a
bound state can be formed only when quarks are in an antisymmetric state (singlet
state) of the total new spin = 0, (Fig. 1 (c)). This is possible, if one chooses
appropriately the new-spin dependence of the quark—quark potential. In terms of the
group theory, this means that one chooses the urbaryons to be the basis of the (3, 3)
representation of SU(3)xO(3) group. However, antiquarks can not be incorporated into
this formalism. It can not be applied to the meson family.

We are able to do almost the same thing with any group other than O(3), if it
contains at least one 3-dimensional representation. The most convenient and promising
group is SU(3) also for the new degree of freedom. It is possible with SU(3) group as
the new degree of freedom to derive the property C for any system which contains
antiurbaryons as well as urbaryons. This is the three-triplet model. An urbaryon is
assigned to (3, 3) or (3, 3*) representation of SU(3) x SU’(3) group.

We shall discuss in more detail the properties A, B and C in the following sections.
In the following discussions, we assume the non-relativistic quark model®, i.e., that the
quark—(anti) quark potential is rather flat, so that the nonrelativistic approximation is
valid, the kinetic-energy term being negligible. We shall discuss on the validity of this
assumption in the last section.

8 2 The choice of the new degree of freedom
It was mentioned already in the preceding section that the group which
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characterizes the new degree of freedom, must contain three-dimensional
representation.

Let us assume that the quark—(anti)‘ quark potential is described in.terms of gluon
exchange. Then the group is required to have the property that 3x3 (or 3*x3*) = sum
of two irreducible representations. In the case of Tati theory, for instance, the state
which consists of two urbaryons, each having new spin=1, split into the sum of three
states with total new spin=0, 1 and 2, respectively, i.e.,

3x3 = 1+3+5,

where, on the right hand side, 3 is antisymmetric, while 1 and 5 are symmetric. If we
confine ourselves to the gluon exchange potential of the second order and choose it to

be attractive for the state 3, it becomes attractive at the same time either for the 1
state or for the 5 state.

Finally it should be noted that the urbaryon-antiurbaryon potential V,; must be two
times more attractive than the urbaryon-urbaryon potential V., because

meson mass = 2M, + <linetic energy> + < Vg>
and

baryon mass = 3M, + <lkinetic energy> + 3< Vye>,

and in the nonrelativistic quark model, meson and baryon masses and the kinetic energy
terms can be neglected compared with the quark mass M,, so that we get

< Vgg>=-—-2M,,
and (1)
< Vgg>=—M,.

I shall not bother you by tabulating all semi-simple groups, but only show you that the
SU(3) group possesses all the required properties.
It is well known that

3x3 = 3*+6, (o7 3*x3* = 3+6%)

in SU(3). Therefore the first and second requirements are satisfied. We shall assume
that the gluon is a vector particle belonging to (1, 8) representation of SU(3) x SU’(3) and
denote it as (B ﬂ)g to derive the third property. The urbaryon can be either (3, 3) or (3,
3%), as was stated in the previous section. Here we take (3, 3) simply for specification
and write it as qqq, where the latin letters a,b,. . . denote the usual unitary spin indices
and the greek letters «,f,... stand for the new unitary spin indices. Then the
gluon-urbaryon interaction Hamiltonian density is written as,
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iG 3 q*%yHq,4(B )8, (2)

aofu

where G is the super-strong coupling constant. The second-order potentials are derived
from this interaction in the non-relativistic approximation as

Il

8
Ve ,ZZAi(l)Ai(Z)v(rm); (3)

and b=

8
— .2 APAP (), (4)

1=1

Vqﬁ

where A; (i=1,..,8) are the new unitary spin matrices and have the same form as A;
defined by Gell-Mann. The indices 1 and 2 distinguish two urbaryons (anurbaryon and
an anti-urbaryon). 1, is the distance between two particles. The minus sign on the left
hand side of eq.(4) is due to the vector character of the gluon. As is well known, we
have

8 .
< I APAP>S = — % Jor 3% antisymmetric qq pair,
=1

= % Jor 6 symmetric qq pair,
= *% Jor 1 q7 pair, (5)

= — %for 8 q7 pair.

Therefore, if v(7)>0, the potentials become attractive only for antisymmetric gg pair
and for singlet ¢7 pair. Eq.(1) is reproduced, if we take

<v>x—§Mq. (6)

§ 3 The problem of exotic states
Let us consider the mass m of a system which consists of %, urbaryons and 7,
antiurbaryons, in the same appreoximation as in the previous section ;

m=NM, + <V>, (7)

where N is the total number n, + A, and

N 8
<V>=< T een 3 ASAND v ,) >, (8)
I>n=1 =1
and
en = +1 for n=urbaryon

= — 1 for n=antiurbaryon.

Eq.(8) is readily rewritten as
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N N 8
S @A) — 3 S O (AM)EP><o>. (9)

1 8
<V>=—5-< 3 ( .
=1 n=1I n=1 i=1]1

It should be noted here that the new unitary spin of an antiurbaryon is not A; but —A,,
and the total new unitary spin of the system is _E__ ; e\ instead of 2 ; AL

An irreducible representation of U(3) group is specified by the ‘lengths’ (f, /2, fs) of
Yang tableau. An irreducible representation of SU(3) group is specified by (p, ¢), where
p=f1—f, and q=f,—f,. If the total system belongs to the irreducible representation (P,
Q), we have

N
S ehi)> = 5P+ PQ+Q*+ 3(P+Q)) (10)

8
< 3 (
1=1 1

n
and

8

<I (NP> = 0+ pa+at+ 30+ a))
=1 _ 16 (11)
3 >

for an urbaryon (or an antiurbaryon), where
p =1, q = 0 for an urbaryon

and
1 for an antiurbaryon.

p =04
Therefore the mass of the system is given by

m = —L (b2 + PQ+Q*+ 3P+ QIM,, (12)
where the use has been made of eq.(6). Therefore we conclude that

m =~ 0, only for P= @ =0,
and
m>M,, otherwise.

Therefore only the systems which are aggregates of new unitary spin singlet (ggq)
and/or (¢7), have low masses compared with M, All other systems are too heavy to be
observed experimentally. Han and Nambu? assumed that the main mass splitting
comes from the quadratic Casimir operator of SU’(3). We derived it along the line of
thought of the non-relativistic quark model.

§ 4 Electric charges of the urbaryons
It is well known that the Nishijima-Gell-Mann rule is valid for hadrons;

Q=1 +-L7 (13)
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where @, I, and Y denote the electric charge, the third component of the isospin and
the hypercharge, respectively. Because every hadron is new unitary spin singlet as was
seen in the previous section, we can modify the N-G-M rule as follows,

Q=L+ LY+ o/ + -4V, (14)
where I;” and Y’ are the third component of the new isospin and the new hypercharge,
respectively, ¢ and g being any real numbers. Since the expectation values of I," and Y’
vanish for a new unitary spin singlet state, the usual N-G-M rule is restored for any system
of hadrons. However, the charge of a charmed state (state other than new unitary spin
singlet state) is different from that given by the usual N-G-M rule. In particular, the
charges of the urbaryons are given by,

Q=-2+ % +-2 forqu

They are expressed in a more elegant fashion, when expressed in terms of [ m, n,
defined by a=/—m, B=2—3n and [+m+n=2 (Table I). When we choose the

urbaryons to be the (3, 3*) representation of SU(3) xSU’(3), we need only to change the
signs of ¢ and .

Table I. The charges of the urbaryons Qe

I+m+n=2.
a o 1 2 3
1 / m n
2 -1 m—1 n—1
3 -1 m-—1 n—1

Table I remains unchanged.

Similarly we can modify the baryon number as follows,
ng =Ty =ng+ oI+ L1 (15)

Of course one has 7g =npfor hadrons. On the other hand we can easily obtain, for the
urbaryons,

~ 1 ' g
o=+ 4;? 5 Jor q o
; ,
=5 ;; 7 S e
D
=—3 7 Jor qas
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where

a=1 2 3

Instead of o« and [, we can use #,, %,, 7, defined by o =n,—n,, F=1—3n, and
ni+n,+n,=1, (Table II).

Table II. The modified baryon number 7,
of the urbaryons q,, #,+#.+n;
=1

a a\

1, 2, 3 1, n, nj

We can combine egs.(14) and (15) to restore the original N-G-M rule (13). We need
not to modify the strangeness S, because it is always integral. Therefore eq.(15) may be
regarded as modification of the hypercharge Y,

Y= v+ ol + v (16)

If =2¢ and F=28 or n,=2I—1, n,=2m—1, ny=2n—1, eq.(14) is rewritten in the
form, )

Q=1 + LY

The modified hypercharges Y of the urbaryons are tabulated in table III.

Table III. The modified hypercharge Y of
the urbaryons, [+m+n=2.

\\a\& 1 2 3
1 20—1 2m—1 Zn—1
2 21-1 2m—1 2n—1
3 20-2 2m—2 2n—2

As is shown in the above, the choice of the electric charges of the urbaryons is quite
arbitrary. Han-Nambu model® is only one of examples.

8§ 6 Conclusion

We have seen that the three-triplet model successfully solved the difficulties
inherent to the quark model. The difficulty of the three-triplet model itself consists in
its dynamics.
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(i) Are the g—q and q-g potentials really flat? It is necessary, because otherwise the
expectation value of the kinetic energy would not be negligible compared with the
urbaryon mass. It is very likely, however, that the potentials which are derived from
the gluon exchange, are singular at the origin as Yukawa potential.

(ii) Is the non-relativistic approximation really good? Of course, to answer the
question, the relativistic bound state problem should be solved. It may appear that if
the potential is broad and flat, the kinetic energy term is small and the non-relativistic
approximation is valid. However, more detailed investigations are necessary, if the
potential is so strong that the rest masses are cancelled. Such investigations have been
made by Nagasaki!®, Koide-Yamada'V and Koide'?. The result is that the
non-relativistic approximation is valid only for shallow potentials. The effect of the
negative energy sea should be taken seriously into account for such a deep potential as
shown in eq.(1). The large mass defect comparable to the rest mass never occurs in the
relativistic theory.

In view of recent success of the quark-parton model, it is conjectured that due to
the strong attractive potentials V,, and/or V,;, many unitary spin singlet pairs (¢7)
are created and, as the result, the above-mentioned (i) and (ii) are effectively realized.
This is analogous to the problem of the relativistic hydrogen-like atom with the atomic
number Z>137. Such problems still remain unsolved.

Note added : 1 tried to distinguish a quark in the quark model and an urbaryon in the
three-triplet model, but failed, because the boundary is obscure. The latter is regarded
as a quark endowed with the new degree of freedom.
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