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Abstract The theory of a 1-D metal with a half-filled band is developed on the
base of the simplest model with constant couplings of a finite range. Renormalization
group method is applied. Within the framework of the next divergent logarithmic
accuracy the finite charge renormalization is performed. The behavior of the system
near the Fermi surface at low temperature are predicted to be of universal charactor.
In particular, the Green’s function and the vertex functions should obey the power law.
The power indices are evaluated in the various case of the bare coupling constants.
The theory yields results in accord with the exact theorem about the phase transitions
in 1-D systems.

§1. Introduction

One-dimensional metallic systems have been much interested experimentally and
theoretically. However, there have been known only a few confirmative results®.
Because of the serious difficulties in studying the 1-D attractive electrons in metals due
to the existence of the mutually coupled superconducting and Peierls instabilities the
interpretations of the giant conductivity recently observed in TCNQ series have been
very controversy?.

Some years ago, BycHkov, Gorkov and DzvarosHINski® studied by a parquet
diagram method the coupled two channel problem in 1-D Fermi systems with a simple
model and concluded the occurrence of the simultaneous phase transition of the super-
conducting and Peierls types at some finite temperature. However, this conclusion is
by no means acceptable in view of the theorem®® which dose not permit any type of
off-diagonal long range order to exist in 1-D system at finite temperture.

In the author’s recent note® the renormalizability of B.G.D’s 1-D model® was
pointed out, and the multiple renormalization group (MRG) method” was used to study
this model. The result there, being valid within the most divergent logarithmic terms,
indicated the occurrence of the finite temperature instabilities completely analogous to
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those of the parquet analysis®.

More recently, MENYHART and SoLyoM® reported their calculations by the same
method but taking into account the contributions up to the next divergent terms. The
effect of the density and spin fluctuations considered in the next order terms critically
suppressed the above mentioned intabilities, thus the absence of the phase transitions
except at the ground state was concluded.

The purpose of the present paper is to-extent the investigation to the asymptotic
low temperature properties of the 1-D metals with half-filled bands. As was pointed
out by DzvarosHinskil and LARKIN®, the umklapp processes in such systems strongly
affect the stability of the ground states ; normal, antiferromagnetic or superconducting.
Clearly, the most divergent approach which led to the finite temperature instability® is
not sufficient. Therefore the problem for the present case remains still open.

In §2 the model to include the umklapp process is explained and the MRG method
is briefly outlined. In §3 the perturbation series for the electron self-energy and the
vertex function up to the third order terms are studied within the logarithmic accuracy.
In §4 the solutions for the MRG equations are studied. As a result, the invariant
charges which are the effective expansion parameters of the theory show some finite
behaviors over the whole range of their argument and the asymptotic forms of the
Green’s function (GF) and the vertex function (VF) are of a power type. In §5 the
results are interpreted and discussed.

§2. The model and formulations of MRG method
Let us consider the 1-D metallic electron system in a periodic lattice, which is
described by the interaction ;

H=—=3V(p1,00) @* p,0 @, 8, Bpya D py, s, patDs. 1)

where

A 1 for pr+p=ps+p:i+G, (2)

bitD2 PstDs { 0 otherwise,
G is a reciprocal lattice vector. If the band is half-filled
G=4dnpr , n=0, £1, £2,

where py is the Fermi momentum of the electron. With this in mind we consider the
simple case of V(p,...,p.) as;

V(—’_—___'_):gly
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V(+—+-)=gs ©)
V(++--)=gs,

where the sign + or — means that the corresponding momentum p; lies within the
range of width D/ v (v is the Fermi velocity of the electron) around the plus or minus

side of the Fermi surface. The coupling constant g, corresponds to the umklapp
process.

The renormalizability of our model can be readily verified by considering the
diagram index K for any connected graph in the perturbation series. In our case it is
given by

K=2-N/2

with N the number of the external lines. One can see that the situation concerning this

index K is completely analogous to the case of the kondo effect, and the proof for the

renormalizability is the same as that given by ABrikosov and MIGpaAL!'® in the latter case.
For the model above described the most important cases for VF are written as ;

1_‘(1/1&2(230/4(+ - +):g11—‘15€¥10’3 5&20’4 —ng‘z5ala4é\aga3, (4)

Falaza3a4(“|‘ +— —):gsl—‘g('o‘alagﬁazm — 6 (1/45(12(13)

(see Fig.1), and the full GF;
G)=dD) (e— &), (5)
where &=v | p—pr | and

)= 1-Go3);" (6)

Fig.l. The full vertex part corresponding to (4) in the text. The full line represents the electron with
momentum~pg and the broken line with momentum~-pp.
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The scale-invariant charges in our theory are given by
Uilx, u, g)=g.d*(x, u, &IV Ax, u, g)/nv, (@)
where x and u are the characteristic energy of the electron and the cutoff D which are

suitably scaled, and g=(g,, g£., £), the set of the bare couplings. These invariant
charges must satisfy the set of Lie equations;

72 Vi(2.8)=0i28), ®)
where

P28) =20 e18) | 1 ©)

z=x/u.

We have assumed the following subsidiary condition must be fulfilled by d and T, ;
F(l,ug)=1, F=dorTy (10)

Hence,
Vil ug)=g./ nv. (11

Generally, we can consider the following two conceptually different possibilities ; the
case I, the finite charge renormalization,

As dg;
el 12
f ;. Didg) o (12)
where
A=V Z(O,g) , finite,

and the case II, the infinite charge renormalization,

oo

S/ gl_—qféj)—:m (M is finite or infinite). (13)
In the case I of the finite charge renormalization. the function ®; has a sufficiently
strong zero at g;=A.. In the following we shall see that the final results will bring us to
the case I whereas the case II will be met in the intermediate step of the insufficient
lower approximation.

It should be noticed that the Lie equations analogous to Eq(8) must hold for any
other renormalization-multiplicative quantities with some modifications, in particular,
-for d and T';;
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)= (1) | oo B

PRI P SUUY o Etrc Y S SSY W(z8) | -1 (15)
9z ; o8 &=1.

Once ¥ are known these equations are solved by quadrature.

§3, Perturbational determination of the scaling functions

In the MRG method the dynamical aspects of the system under consideration are
embodied in the scaling functions. The method employed here to determine the
functions ¢ and also the functions in the right hand sides of Eqs (14) and (15) is the
conventional diagrammatic expansion of VF and the self energy of the electron which is
considered to be reliable at least in the neighborhood of the cutoff D and in the weak
coupling case. Although here we start with a 7°=0 scheme the final results can be

suitably matched to the finite 7 description by the proper replacement of the
arguments!®).

b) c)

Fig.2. The second order diagrams in the most divergent series.

The first of the most divergent logarithmic contributions comes from the diagrams
as shown in Fig.2. If their energy arguments are all of the same order of magnitude
such as ¢+ &~e;—&~w, We can find the contributions ;

g )=2? /(zv)In(w/ D),
2212 2(w)=8% /@2 rv)In(w/ D) — g% /In(w/ D), (16)
835N w)=(g:—2g2)g:/(xv)In(w/ D).
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The higher order terms in g in the most divergent series do not make any
contribution to the scaling functions because of their dropping out from (9) and the right
hand side of (15). All the terms of the form g”In" '(w/D) for n>2 are automatically
taken into account in the Lie equations. The self energy does not make a contribution
in this order, therefore, ¥;s coincide with T's.

The substitution of (16) into (9) leads to the same results as those by the parquet-
diagram sum method®”. The solutions have unfavorable poles implying the finite
temperature phase transition. Thus, the most divergent approach breaks down at
temperature corresponding to these poles.

In order to ask for the solutions which are valid over an even lower range of
temperature it becomes necessary to go to the next divergent or even lower order series.

The next divergent diagrams of the VF in the third order perturbation are shown in
Fig.3. The first of them (Fig.3a), which was calculated by MENYHARD and SoLvom®, are
composed of only g, and g, vertices; '

§Fig.3a

Fig.3. The third order diagrams in the next divergent series.

g% w)=2g2,82(8:1—&2)/(27v)*In(w/ D), an
&1 w)=(g} —28% 8. +28.85—283)/(27v)*In(w/ D).

The diagrams containing g, vertex are shown in Fig.3b and 3c. Their contributions
are;

g8 =—g.8%/(2rv)In(w/ D), 18)
&1 w) =(g.—£1)85/(2rv)*In(w/ D),

and
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Fig.3b

Fig.3c
&30 0) =(81 —282)83/(x0)*In(e/ D). (19)
Finally, the electron self-energy as shown in Fig.4 contributes as ;
29(p)=(gt —£.8:+8&3) (e—&)/(27v)*In(w/ D), (20)
S(p) =1-23/(2rv)(e—&)In(w/ D).
The above self-energy contributions are essential to keep the theory so consistent as

required by the Ward’s identity for VF and GF®%!'", and play an important role in
canceling many of the vertex contributions in our case.

P T PP Sy
- N s S
1’ \ / ‘\
—CG——D—> @ —<—@>
N ¢ \\ 0
N . N .
S P4 ~o "/
\~~~<___' ~~D- -
a) b)

Fig.4. The self-energy diagrams.

84. The solutions of the Lie equations
Now, it is ready to solve the Lie equations formulated in §2. Incorporating the
contributions (16)~(20), and then constructing (9), we obtain from (8) the equations;
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dg, 1.3 av _ .,
z 2z =y +7\p1y z a2z = 0 (14—+ ‘114) (21)
Z_d”\‘pi_ W (1 +‘i‘qj4) +’i—\y§

where we defined as ; v, =y, —20,.
The solution for the first member of Eq(21) is obtained as;
1 U+2 1 1, &+2

Inz= —‘\ﬂ‘{‘ 1 ~-+——7ln z .

(22)

The solutions for ¥, and @, cannot be obtained analytically. However, we can see that

the monotonous and smooth solutions can be obtained for all y, hence the finite reno-
rmalization case I is met in fact for our problem.

In the infrared limit z—0 in which we are interested ¥; tends to the limit A, as
follows ;

case i)  £1,8:>0,8:20 ;A=h=Ak=14=0,

caseii) g1, 8.<0, 820 A=-2 =0, k=12 A, =-2

case ii)) £,>0, £,<0, g:2 0 P =0, 22=1, 2 =£2, A==2, (23)
case iv) g£,<0, g.>0, gsz 0 s A=—2, L=—1, L, =A,=0.

Following the same procedure as above we find the Lie equations for 4 and I'; from
Eqs(14) and (15) as;

eLind(zg) :%(\1/% U, )+%xp§ , 24)
zi Inl(z.8)=u, +%(w/2 —u? —%\pi )
d
ST (e8) =g (98— + 0} — WiV, W 0E — V)~ 0+ Bwt}, (29)
2 2 2

Z_ﬁ In(2,8) =W, — 20, _%(\P? + 200y, —203)

The asymptotic expressions for d and I'; can be readily obtained from Eqgs(24) and (25)
by using (23) resulting the power type ;

doc(w/ D), Iiocw/ D) (26)
in the neiborhood of zero energy. The power indices 4 and v, are evaluated as follows ;

case i) u=u=0, for 1=1,2,3,
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case il) £=3/2, w=-3, 1w=0, =3, @27)
case iii) and iv) w=3/4, v;=-3/2, fori=1.2;3,

Note that the case iii) involves the Hubbard model : g,=g,=g,=—g,>0.

It is interesting compare these results with those of the case g;=0%, the case of a
partial number of electron per lattice site. The latterican be a also considered by
setting ¢s =¢, =0 in Eqs(21) and (25), resulting as;

casev) g,>0; A=1=0, p=y=0, for 1=1,2,
case vi) g,<0; A=-2, X==1, u=3/4, u=-3/2, for i=1,2. (28)

Unlike the case g,70 the limit of the invariant charges and the power indices in (28) are
determined solely by the sign on g, notwithstanding the sign on g,.

Finally, we transform these results to the behavior at finite temperature with the
help of the matching condition'®. In doing this we need only notice that the single
variable z in Eqs(21) and (25) should be interpreted as 77D provided the characteristic
energy o is of the same order of magnitude as or less than the temperature 7. Thus we
can conclude that the temperature behaviors of GF and VF are well characterized by

d o (T/D), Ty o< (T/D)", (29)
which are precisely the same power law as (26) and (27).

§5. Conclusions and discussions

The investigation of the simple model of 1-D electronic systems with half-filled
bands has been developed by means of the renormalization group method, The
calculations have been accurate up to the next divergent logarithmic contributions. As
a result, the behavior of the invariant charges is always monotonously varying and finite
over the entire range of their characteristic energy or of the temperature and free from
the ghost poles. Correspondingly, GF and VF obey the power low in energy near the
Fermi surface or in temperture near the absolute zero, and the power indices are either
equal to zero or of the order of unity with positive (for GF) or negative (for VF) sign.
The form of the asymptotic GF and VF is of universal charactor for arbitrary but weak
couplings. The divergence in VF has been possible to display exclusively at zero energy
and absolute zero temperature. In this point, as in the case of MENYHARD and SoLvom®,
the present situation makes a fairly striking contrast with the predictions made by
DzyaLosuinskn and LArxiN® with the most divergent logarithmic accuracy, where the
invariant charges (and VF) displayed unphysical ghost poles. In other words, the present
results would predict that phase transitions in our system, if they are possible, should
manifest themselves only at the absolut zero temperature, which is in accord with the
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HoOHENBERG’'S theorem®.

As have been seen from Fig.3, the next divergent graphs involve the density and
spin fluctuations accompanied by the electron-hole pair excitations with total
momentum~0 as well as by the electron-electron (hole-hole) pair excitations with total
momentum~2pr (when g;=0). These fluctuations have not played any significant role
as long as the invariant charges have remained small as compared with unity. This has
been the case if the bare couplings are all positive in sign (case i). However, in the
other cases the growing of the invariant charges due to the most divergent contributions
has been suppressed by these fluctuations to a large extent, once they have attained the
value of or larger than unity. The suppressing effect has been recognized as a general
feature underlying the phase transition in 1-D systems.

The perturbation calculations carried out in §3 have shown that if the band is
half-filled (g;+0), the umklapp processes as p,+p,=p;+ps4pr make contributions in
a logarithmically singular manner to VF and GF. Therefore, as emphasized?, it was
expected that g, interaction should strongly affect the properties of the variety of the
phases in the present system. Certainly, the infrared-limit of the invariant charges and
the power indices of VF and GF have differed in quality from those of the case of
g5=0.

e e — e e e ——

Fig.5. The fourth order diagram in the next-next divergent series.

Strictly speaking, as was recognized in MENYHAD and SOLYOM'S case®, the present
theory is still questionable if the effective expansion parameter of the theory (the
invariant charges) becomes comparable with unity. This is actually met in our cases
ii)~iv) as well as in the case vi). Clealy, in principle, any conclusive statement for these
cases might be made after the complete account of the whole progressions of the series.
Neverthless, our tentative examination of the next-next divergent diagrams as shown in
Fig.5 suggests that it dose not significantly alter the present matter of affairs.

The problems that have remained are to predict the observable properties of the
systems and also to discuss the possible ordering in the ground states. They will be
studied in the author’s separate paper.
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