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1. Let #(z) be a subharmonic function on the compact domain in z-plane. Then
it is well-known that #(z) attains its maximum on the boundary of D. But the
problem where is the minimum occurs in certain circumstances.

Now let U denote a closed disc and P;eEU, (i=1, ..., ») and PeU be = fixed
points and a moving point, respectively. We consider the following function

(1) fu(P) = & . (=0)

i=1 Fﬁik T A |zl

where PP; denotes the distance between P and P, and z and z; represent complex
numbers corresponding to P and P;. Since each term of (1) is a absolute value of the
regular function, it is obvious that f,(P) is subharmonic in U. The former author
gave some results about the minimum of (1) in the case that k=2 and n points are
located in the special situations ([1)). Here we treat such similar problem in the case
of k=3.

2. Let D,,, be a closed unit disc bounded by the unit circle C,,,. Next we describe
the six circles Cl,j, (j1=1, ...,6) with equal radii 1 so that Cl,j] (7:=1, ...,6) are
tangent externally with each other around C,,, and hence the segments, which join
the centers of C,, i, successively, constitute a regular hexagon R,, where the center of
Ci,; has the coordinates (2,0) with respect to rectangular coordinate system. Further
we describe the twelve circles Cz,ji (72:=1,2, ..., 12) with equal radii 1 so that Cg,jz
(7.=12, ..., 12) are tangent externally with each other around Cl,,-‘ and hence the
segments, which join the centers of C,, i successively, constitute a regular hexagon R,,
where the center of C,,; has the coordinates (4,0). We continue such procedure by
turns. Generally, we describe the 6z circles C,,; (j»=1,2, ..., 6n) with equal radii 1
so that Cﬂ,]’n (7.=12, ..., 6n) are tangent externally with each other around Cn.—l,jn_l
and hence the segments, which join the centers of C,,; successively, constitute a
regular hexagon R,, where the center of C,,; has the coordinates (2, 0). We call the
first index ¢ and the second 7; of Ci,ji i-th rank and j;-th emission, respectively. It

* Department of Mathematics, Faculty of Technology, Gifu University.

—_1 —



2 Tohru AkAzA and Nobutaka Oc1

is obvious that the total number of circles C,,, and C,’,ji (=12, ..., m;5;=1,2, ..., 62)
is equal to 3n(n+1)-+1. .

Let us denote the center of C,',ji by Zisj Let P be a moving point in D,,,, which
has the coordinates (x,y), z=x-+7y. We consider the following subharmonic function

(2) fai, () = 33 5

=1 j.=1
B

|z—2z,5. |3 VZE Dose.
?
The purpose of this paper is to determine the point at which f,,; attains its minimum
in D,,,. This problem occured in the investigation whether there exist or not Kleinian
groups whose singular sets have positive (i)-dimensional measure ((2)). It seems

2
very easy to solve this problem, but the calculation is very difficult and complicated.

3. Now we shall give the main theorem.
Theorem A. fu,i, (2) attains its minimum at the origin.

For the proof we prepare the following theorem as lemma.

Theorem B. Let P,=P(2, =), P,=P(2, %) and P3:P(2,—%) be fixed poinits in
the complex z-plane, and P=P(r. 0) moves in the fixed closed unit disc U: |z|<1,
where (7, 0) denote the polar coordinates. Then the function

’

(7=1,2,3)

3 1 1 (“5 - Zj)ni
.. B ) 3
f5(®) PP i lz—zi® Zi ¢

j=

-

attains its minimum at the origin.

If Theorem B establishes, then Theorem A is easily proved from it. For the
function f.,j, (z) is decomposed into pieces consisting of three terms, each of which
corresponds to centers of three circles so that such centers are vertices of a equilateral
triangle with centroid at the origin. We can apply Theorem B to each piece, since we
can consider that the distances from the origin to the fixed points and the radius of
U in Theorem B are relative.

Therefore if each piece attains its minimum at the origin, then it is easily seen
that the sum of pieces attains also its minimum at the origin.

4. Now let us prove Theorem B. For this purpose we must prepare three lemmas.
We transfer P, to the origin O and consider the function

(3) f5(P) = f{(P)— PP, ' =PP, ' +PP;

From the symmetricity of the figure we may consider the behavior of f;*(P) in the
upper half plane. Denote by C the center: (2, 0) of U and by H the point of contact
at which the tangent OP, intersect with the boundary circle of U. Hereafter we use
polar coordinates only. Describe a circle with the radius OH and the center at O and
denote the intersecting point with OC by R, Denote by 4, the closed domain bounded
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by segments HC, RC and the circular arc I;[TQ Extend the segment OC to the positive
direction and denote the intersecting point of the extension with the boundary circle
by Q. Further we denote the intersecting point of segment CP, with the boundary
circle of U by D. Then we obtain a closed domain 4, bounded by the sector CQD.
Take a point P in 4,u4,. Fix 7 of the coordinates (7, ) of P and rotate the radius
vector OP around the origin O until OP intersects the segment CH or CP, and denote
by 6,(») the rotating angle.
Then we have the following

Lemma 1. Fix 7 in\/ %O <r<<2y/'8. Then the function fi*(P) is a monutone

increasing function of 0 in 0 <0=0,(r).
Proof. It is easily seen that f,*(P) is represented in the form :

3
(4) FHP)={rt 12— 47/ 3 cos (0—5) | 72
( — TS
{72 12— 41/3 cos (0 +e} 2
- ) 2 {pcos (0" "2l BENEES
=(41387) 2[10 cos (0 G)J 2 4 1/0 cos ( 6+ G)J 2|,
where p= :1;_%2 , (=1). Here we note that 1.8>p0>1 in the case of 1/10/3 <7r<<
7
2v°8 .

3
Now we put fi*(P)= (41 87) 2 g(0) and differentiate ¢;(6) with respect to

0 for fixed ». We have

5
@é%@c —-g—»{p—cos (a—%> }.— 2 sin ( a—%)
3 T ]—E . T
—5 o—cos(f "“f))" 2 sin ( 6+F>
If we put
_5
(5) o(8)=sin 0 (p—cos 0) 2 ,
we have

~ (PP = -y +o 0+ -

3
We see easily that the condition fi# () = (41/37) 2 g/ (8) =0 is equivalent to

the condition
(6) 9 (0—g)+e0+g) =0 .

Hence in order to prove Lemma 1, it is enough to show that (6) establishes in 0 <6
=0,(7) .
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Now let us prove this fact by using the graph of (5). For this purpose it is
sufficient to investigate the shape of the graph of (5) in the intervals

<0 §——g——l—00 (7) and %g 0 g%—kﬁo (r) .

=B

But since the solutions of ¢(8) =0 are §=#nn and ¢ (0) is an odd function, finally it
is sufficient to investigate ¢(0) in the interval

T T
(7) 5= (N =0=0,() + 5
(8) .
¢(0) symmetric p N -
¢ =) PlO——F °
with respect to (‘9"' 6) < 6) )
the origin monotone debreasing

in 0==0=26,

l‘ ¢<9+ Fn)

T T
—Z_Tig :
6 6" p

j T Y b

Fig. 1
5. At first we shall seek for the maximum of ¢ (0) in 0 < 6 <=. Differentiating
¢ (0), we obtain
7

— 2 1R TR
P(0) = —3—(p~ cos 6)7 2 (cosﬁ +Zp_’2_15ﬂ)(cosﬁ_l/p_—gli_ﬁ) .

Since p>1 from (4), it holds (1/p2315+0)/3>5/3>1 and 1> (v p2+15—0)/3

> 0. Hence ¢(0), (0 <0<=) attains the maximum at
02165 —
(8) 0, = Cos—l(!ﬂfJL’i) ]

If it holds that

T

(9> 01§6 HO(”):

then ¢(0) is monotone decreasing in the interval (7) and hence (6) establishes, where

¢(~—%)+§0(%)= 0. Then f*(0)= 0 is proved and our claim is completed.
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Now since 0 <0, and %—00(7’)<-§— , (9) is equivalent to
(10) cos 6,= cos (%— G (r)) .

We can find the value of cos (%—00(7)) in the following two cases (@) and (&)
(Figure 2) .

(@) The case of /10/8 =r<<2.

From the figure it is easily seen that
V3

v

(1) cos(%~ 8, (1’)):

() The case of 2=<7r<<21'3.

From the figure we get the following simultaneous equations :

(@) ®
Fig. 2

[ #+VEr=27F
l x2+y% = 7*

(12)

Solving (12) and considering the relation cos (—g—ﬁﬁo)z % , wWe obtain

. T(1 4753
(13) cos(g—eo(m):‘/?’( +2Vr’ 3)

We shall prove from (8), (10), (11) and (13) the following inequality
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_ 1/—3» for & <r<?2 ,
(14) Vortis—r o
3 = _
1/3(1'{<21/7’2—3) ,for 2§7,<21/§’
7
_ 12
where =15y (z1)

(i) The case of \/ 30 Sr<<?2.

It holds

Verrls—p V3 1 !7V5533—>Up+31/§ﬁ

3 7 37 (
54(r— 10
_ 8 >0
V37 {V (724 12)2+ 48 x 1672 - (#2+48)} —
(ii) The case of 2=7r<<2y3 .
We obtain from (14)
Ver+1s—e V31 +vy2—3)
3 27
1
(15) =lay3r W(HIZ) 48X (7 80-+18y/7°— 8)}

_ 1/ 3 {1072+ 6 )—(#2+30)1/72— 8 }
7 {V (7212248 x 1572+ (72 +30+1/ 72—

N}

If /723 is replaced by t in (15), then the right hand side of (15) is modified
into the following :

—V/ 38— 3)(t—4)
7 {V (72 12)7+ 48 X 1572+ (#24+30+ /52—

(16)

3)}

Since 2 <7<(27/3 corresponds to 1 £¢{<<3 from {=1/,2—3, (16) and hence the

left hand side of (15) is positive. Thus we can prove the inequalities in (14) from the
above and the proof of Lemma 1 is complete. q.e.d.

6. Next we must prove the following
Lemma 2. If P moves on the interval [ 0,37, the function

(n f3(P) = OP*+P,P°+ PP =3+ 2{3 +(3 _,,>2}—%

does not attain its minimum on [2.557, 3], (Fig. 3).
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Fig. 3

Proof. It we differentiate f3(P) with respect to #», we have

3{274(3 —r)—(V3+(3 =)D}
(V8 +(3 =)D

(18) Jf'(r) =

Further we differentiate f3'(#) with respect to 7, so we obtain

1 202{3+(3 —r*HV3+(8 - +7r{4(3—7)P*—3}]

19 (y)= "
( ) 3 f3 () 7,5(_1/3_'_(3_r>2)7
If f(#) attains its minimum at 7, then it hold
f/(r)=0 and £/ (r)=0.

Hence we have from (18) and (19)

(20) (V3 +(3 =)= 27(3 —7)
and
21 2{3 +(3 =) HV 8 +(3—r)+7r{4(3—7)*—3}=0.
Substituting (20) into (21) and dividing by 74, we obtain
4(3—7)2+5(83—7)—83=0.

Therefore we have

_ _29-V/73 _ 20.456

7 5 5

= 9,557 ,
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since 7 = _.Z.Q_%l/ﬁ is not satisfied by the assumption.

g.ed.
P,A=P,A’
13+ (3= VBT (3—rF PIF P,B—P,B = _135
P,P—P,P’
QA =0.443
QP=3 —r

o=y L

Fig. 4

Take any point P on the closed interval [O, Q] with distanée 7 from the origin
P,=0. It is easily seen that PP,=PP,=1'3 +(3 —7)% (Fig.4). Describe a circle with
radius PP, and the center at P, and denote by P’ the intersecting point with CP,. It

is obvious that P'P,=P'P;=V 3 +{3 -1/ 8+(38 —7r)2}> We consider the following
-3 ___ -8 _-38 —3 —3 -3 — —3
quantity D(r) =f3(P)—f3(P")=(PP, +PP, +PP; )—(P'P, +P'P, +PP; )=(PP

. -3 ____-3 . _3 _3
+PP, ) — (PP, +P'Py )=[r "+{8+(3—7)2} 2]—2[ 3+ {3 -/ 3+(3 -2} %
Then we have the following

Lemma 3. D(7) is positive on I*=[3 ~%§, 2.557] and it holds f3(P)=>f3(P’)
on I*, '
1
Proof. It holds for 3 wﬁ <7 <£2.557
72 < 2.5572 << 19.62

3
(22) l 34(3 7)< 3 +(_§_)2=1T°

N 4 \2 —
3+{3 -3+ ez +(3 -/ 10 J-18-32.8T_ 1313,
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Therefoee we have from (22)

D)X [3+{8 -1 3+(3 —1')2}2]%

=[3 {8 V3 +(B—r?¥

72

T 3+{8 VB (3P
] '[ 3 +(3—7)? } —2

3 3 R

13.13 \z 13.13 \z 7 —_
g( 19.62 ) +( 10 ) —2>(0.64)° +1.313y/1.313 — 2
>0.8%+1.313x1.145— 2 =0.015385> 0.

qg.ed.

7. Now let us prove Theorem B by using the above Lemmas.
Proof of Theorvem B.

It is obvious that f3(P) is symmetric with respect to lines P,C (¢=1,2,3), that
is, the values f3;(P;*), (i=1,2, ...,6) in Figure 5 are the same.

Fig. 5

Hence it is enough to investigate f3;(P) in the angular domain ICP,. Let P; be the
origin O of polar coordinates and P,C=O0OC be the basic line. (See Fig. 6)
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QA =0.443
1
B=T3
P,A=P,A’

PB=Pp =,/ ¥

00Q=3
OA=2.557

. 1
OB=3 -3

OC=2

Fig. 6

Let the moving point P=7¢if restrict in the closed interval [ 2, 3]. Then the
function

fs(P) = fr¥(P)+7-3

is monotone increasing as the function of the variable ¢ in 0 <40 gﬂo(r) from Lemma
1. Hence there exists a point P, only on the segment CQ at which f;(P) attains its
minimum in the angular domain QCD. P, is restricted on the closed interval [C, A]
from Lemma 2, where OA=2.557 and AQ=0.443.

Take a point B on the closed interval [C, A] so that P—sz\/ % . Further we
take any point P in [B, A] and describe a circle with radius P,P and the center P, and
denote by P’ the intersecting point with the segment CP,. Then we have from Lemma
3 D(r)=f3(P)—f3(P’)>0, and hence P, is not on the segment AB, but necessarily
on the segment CB.

Now it holds that P,P g\/ 139 for any point P-C on CB. Considering the point
P, as the origin and the line segment P,C as the basic line and using Lemma 1 for
2>7 ;\/ %9 again, we obtain the result that f3(P)<<f;(P) for the point P’ on the
line segment P,C so that P,P’=P,P. Hence the point P, in which f;(P) attains its
minimum is not P. On the other hand there exists such point P, since f3;(P) is
.continuous on the closed interval [C, B]. Thus P, must coincide with C.
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q.e.d.
Bemark. (1) We can prove that Theorem B establishes in the case of the exponent
a (3 <<a<<4) by the similar manner.
(2) Does the function f, jn(Z) converge absolutely and uniformly in Dy, as n tends
to infinity ? If it is true, then f(z):”lil;noo Sfui,(z) will be also subharmonic in Dy,
and attains its minimum at the origin
(3) When the points P,, i, are located at the vertices of the general normal polygon

and the distances from P,, i, to the origin are more complicated, it is conjectured to
obtain the interesting results.
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1. Introduction. Throughout the paper, the letters p, py, ps, ... Will be reserved
for prime numbers. Let »(%) be the number of distinct prime factors of a positive
integer #, and let x be a positive real number. Let f;(¢) (1<{=<k) be polynomials in

&, satisfying the following conditions :

(¢;) Each (&), (1<Ci<k) has integral coefficients ;

(cp) Each f;(&), (1<<i<k) is of positive degree ;

(cg) Each f3(&), (1 <i<k) is positive for £=1 ;

(c) fi(8), ..., f1x(&) are relatively prime in pairs.

Let 7; (1< i <Fk) be the number of the primitive and irreducible factors of f;(&).
Let ¢y, Cy,..., be positive absolute constants. We put g(x)=(Inlnx)! #*(Inlnlnx)* /2%, Let
A{---} denote the number of positive integers with some conditions....... We put, for
integers #>>3 and for 1 <<z <k,

of{ fi(n)}—7; Inln »
V7 Inln n

To each integer #>>3, there corresponds a point (#,(#),...,u#,(#)) in a k-dimensional

=u;(n)

space R*, Let E be a Jordan-measurable set, bounded or unbounded, in R. Let A(x;E)
denote the number of integers z (3 <m<{x), for which the points (u(%),...,u;(%))
belong to the set E. Tanaka obtained the following Theorem A :

A(x;E) 1k
=

Theorem A. lim (2m)*k ’ZS exp(—iz uiz)dul...duk.
B 7

X—>00 =1
The integral is the sence of Riemann.[ 8 ].

Similarly, by using the sieve method of A. Selberg [ 2], [ 1] and Tanaka’s
method [ 3], we shall prove the following main theorem :

Main Theorem. Let «;, f; (1<i<k) be any real numbers with «,<<p; (1<i

<k). We put

A(x)=A{3gngx s 7 Inln n+a;/7; Inln n<o{ fi(n)}<<z; Inln n+F,;1/7; Inln n},
(1=<E<pk).
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