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Recently many resonances with spin 3/2 have been observed. If we regard them
as elementary particles and want to calculate an S-matrix element in which these
particles participate in intermediate states, we must have a knowledge of the pro-
pagator of spin 3/2 particle in advance. According to Takahashi and Umezawal),
the propagator can not be determined in turn without the knowledge of the Lagrang-
ian of the particle. i

The Lagrangian of spin 8/2 particle was obtained by Rarita and Schwinger2) in
so-called Rarita-Schwinger formalism and the propagator by Takahashi and Umeza-
wal)2), Here we should like to point out that the Lagrangian obtained by Rarita-
Schwinger3) and the propagator derived by Takahashi-Umezawal) are only special
cases of the most general Lagrangian and propagator which contain an indeterminate
constant.

The Lagrangian density we obtained is of the form,

L =Y (%) A (3) Yo (%), A (0) = — (B +m) 0py + @ (rpdy + 7y 0u)
+ m{%(&zz + 9+ 1)6—(3a2+3a+1)m}ru], (1)

where m denotes the mass of the particle and « is a real constant # — % and 8 =740u.

From the Lagrangian (1) we get the eq. of motion,
@ +m) yu+a(ruy + oux)
+m{%(3a2+2a+1)6—(3a2+3a+1)m}x=o, (2)
where x=7q¥q and y=04v¥,. Applying 0, and r» to eq. (2), we have
[+ @8+ mly+{FGa+t D@+ DO Ga +3a+ Dmdfx=0, (3)

and
{Ba+1)8—8Qa+1)m}rx+2y=0 (4)

respectively, where the use has been made of a = ——21~ , in deriving eq. (4).
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Eliminating y from eqgs. (3) and ( 4), we can readily show that

x =0 (8)
and

y=0 (6)
from eq. (4). Substituting these results, we obtain from eq. (2),

Thus the Lagrangian density (1) is compatible with eq. of motion (6 ) and (7),
Takahashi and Umezawal) have shown that the propagator of the particle can
be written as

S (£) = — widuy (@) dp (2), (8)
where dp,(9) should satisfy the relation
| A (3) day (8) = (O = m2) 5,0, (9)
With the relation (9) and the Lagrangian density (1), we can determine dv(9)
as follows,
duw (3) = = B —m)[ 0w — g 701y + g (ruds — 150
— 523 0n0) — gt s Q= m®) (e + 1) (rudy + 1
+mmn)+(a+1){m8»—ry0ﬂ+(6—m)mru}], (10)
The Rarita-Schwinger’s case corresponds to the “choice of @ = — 1/3. The physical

meaning of the indeterminate constant is not clear yet. Since the term which contains
the indeterminate constant is proportional to the factor ([] — m?2), the commutation
relation {v¥.(%), ¥,(x’)} does not depend on the constant a.

Also the Lagrangian of spin 2 particle can contain an indeterminate constant.
If we postulate, however, that the propagator should not contain any pole other than
that corresponding to the original mass, the indeterminacy disappears in this case and
the resulting Lagrangian becomes identical with that obtained by Wentzel4),
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