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Introductioll. 

In the Symposi um on“Application 01 the th日oryof functions of several complex 

variables to physics" held at Research Institute for Mathematical Sciences of Kyoto 

University in Feb. 1965， the following problem was present己dby a physicist: can any 

meromoゆhicjunction on a dmnain D in Cn be merornoゆJdcallycontinued to the en-

veloρe 01 JlOlomorthy 01 D? 

The purpose of the present not巴 isto solve this problem positively. For this 

purpose we shall discuss a meromorphic completion of any domain of Cηor， n10re 

generally， of a domain over a Stein manifold. We shall give the affirmative solution 

of the problem of quoti巴ntr己presentatlonof meromorphic functions :for any domain 

over a Stein mani:fold. As a result of this solution， we shall state a11 answer about the 

above problem. 

The present note is a summary of the investigation about a 111巴r01110rphicor 

holomorphic completion. 

The author wishes to express his gratitude to Prof. J. Kajiwara for his valuable 

suggestions. 

1. Notations and defillition.s. 

Let Cn denote the n司dimensionalcomplex numb巴rspace which is the dir巴ct pro幽

duct of n complex plan巴s，each letter of a， b， c， ・昏. ， w， z etc. denote a point of 

Cn， (Zl， .・俗 ， Zn) denote coorclinates of a point z， and {I Zj -aj I く rj }j~l denote a 

tolydisc which is the direct pr吋 uctof n discs {! Zj -a} !くrj}，j = 1， ... ， n. 
A domain (connect己dand open set) D of Cn is said to be a Reinhardl domain 

with center at the point c with coordinat巴SCl， • ・. ， cn if its automorpl出msconsiS1 

of the n.・parametergroup {T(tl1， .・・ ， tI n)}， each element of which is a biholomor-

phic mapping: 
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， en)~ z，i=二 -Cj) +Cj， = 1， ω・.，銘，

where 0 三~ (} j話 2n:， j = ， ".. ， n. 

The Reinhardt domain D is said to be if the center C is an interior point 

of D¥ If with each z(町己 D there belong to由記 domainD a11 the 

z for which 

I Zj - Cj 1 ~三 lzJO)-CJl ， j =lB@。。，銘，

the domain D 1S said to b色 acomjうleteReinhardt domain. Of cours日， a complete 

R色inhardtdomain is proper. If D is a' Reinhardt domain with center at the point c， 

th巴n means of a domain J in first c10sεd quadrant ;;; O}j~l of the 炉 dirnensio司

nal 問 alEuclid space Rn ， D is express巴dby the form 

D = fz E C竹 IZl - C1 1 ， ・・・ ， i z" -c" 1)巴

Such a dornain L1 wεshall call a domain of real eXtression of D. Let D b巴a

Reinhardt dornain with center at the point c. If the domain J of real exprεSSiOI1 of D is 

mapped onto theεconvex  domain &* of thεEuc1id space 

1;，，) the transforrnation c j = log ! Zj - Cj I ， j = 1，・" ， n， then D is said to have 
the 10仰 rithmicallvconvex domain of real 

We shall define a m色romorphic holom.orphic) an of mero岨

morphy holomorphy) and a domain of holornorphy) for a dornain 

over a complex analytic manifold as follow8o 

Let l¥II bεa complex analytic manifold. A domィzinover l¥II i8 a p乱ir(V， cp)， 

where V is a CD:mected and complex analytic manifold， and タ:γ→l¥IIis a locally 

mapping. Consider domain8 (V， rp) and over 11ダwitha ，"llalト
タ)in にグ)， which is a rnapping ，¥: V→ V' and satisfies 

ヂニタ'0.1， Let f be a holomorphic) function on V. A merornorphic 

(or holornorphic) function f' on V' with f = is c呂lleda (or holo噛

continuation of f to (A， V'，ダ)or， briefly， to V'. Let U' be a family of 

meromorphic holomorphic) functions on Vo If any meromorphic (or holomorphic) 

function of tf has a holornorphic) continuation to V'， then (ん V'，

¢勺 or，briefly， (V'，グ)is called a (or of ( 

タ)with restect to the A merornorphic holornorphic) cornpletion 

V~ ， ;;~) 01'， briefl:iん均)of (ψ)  with 1'esp似 to容 is間llledan 
meromorthy 伊)with restect to the family U' if the follow-

ing condition is satisfied: if (.1.'， V'， r:p') is another rnerornorphic (or holomorphic) 

completion of (V，引 withr巴spectto then there exists a mappingψof (V'， rpっ
in (V~ ， r:p~) with ニ ψo.:t'such th批 (Y/'，Viì" ヂ~) is a rnerornorphic holornor聞

phic) cornpletion of (Vf，が)with respect to the family U" which consists of mero嗣

morphic holornorphic) continuation of all meromorphic holol11orphic) functions 

of ~ to V'. 

If tf 1S the farnily of all (or holomo1'phic) functions on then a 
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meromorphic (or hol0l11orphic) c0l11pletion of (V， 9) with resp巴ctto i} and an en四

velop巴ofm巴romorphy(or holol11orphy) of (V， rp) with r巴spectto¥} are called simply 

a meromorthic (or holomorβhic) comtletion of (V，伊 andan envelolうeof meromor四

thy (or holomoゆhy)of (V， 9) resp色ctiv巴ly.

By the same method as r，在呂19range[ 5 J， 九whιoproved the exis凶t色11
uni匂quenεssof the envεlop在 ofho叶3汁lomorphy，w巴 canprove thosc of the envelopεof 

meromorphy. 

The envelope (丸 -Vf， 'q:f) of meromorphy (or holomorpl刑 of(V， 9) with r田pect
to the family consisting of only a function f which is meromorphic (or holomorphic) 

on V， Is called the domain of meromo1'thy holonwゆhy)of f. A domain (17，ヂ〕

over M is called a domain of meromorjうhy(or holom01't旬)if it 1S a domain of 

meromorphy (or holomorphy) of a m巴romorphic(or holomorphic) function on V。

2. Meromo:rphic completion of a Reinhardt domail1. 

In what follows， we deal with proper Reinhardt domains with center at the 

ongm. 

First of a11 we will discuss the meromorphic continuation concerning mぽomorphic

functions in such a domain of th色 spaceC'に Forthe case of n =弘 Thullen[8J has 

cliscussed in detail such a continuation， For the case of n complex variables， we have 

the another proof about theo即日1S011 meromorphic completion by the only use of the 

continuation theorem1) of Levi四Kneser.

By a remark of Okuda凶Sakai ， this theorem 1S equivalent to the following 

Cm刊 INUATJ.ON T日EOREM. f(.2) is meromorPhic (01' holomorl幼 t:na neigh咽

bourhood of the union of the sets {I Zl I = 1， Z2 = 0， 0" ， Zn-l = 0， I ZηI ;孟 1}and 
{I Zl I :壬 1，Z2 = 0，・ 9 白、丸一:L= 0， Zn = O}， then f(z) can be me1'omorρhically (or 

holomoゆhically)continued also to a neighbourhood of the sei {I Zl I :壬1，Z2=0， ...， 

Zl1-1 =~ 0， I z" I ;孟 l}o
Using the above continuation theorem， we have t11巴followingtwo lemmas. 

LEMMA 1. 1f f(z) is me1'omo1'thic (01' holomoゆhic)in the domai制 {α1く 1z11 

くb1，1 Z2 Iく品2，・・. ， 1 zη|くる，，}and {I Zl I くてる~， 1 Z2 1 く b~ ， ・固. ， I zη|く品I
then f (z) can be mer01rlorthically (01' holomorjうhically)continued to the ρolydisc 

{I Zj I くあ};'~1 ， where al， bj仰 db; (j = 1，・・・ ， n) are real numbers satisfying 

the condition 0 <向く見くh1and 0 <科くあ(j= 2，・・.， n). 

LEMMA 2. lf f(z) is meromorthic (01' holomorthic) in the domains {I Zl Iく

b1，azく IZ21くん ，a旬<I Zn I <b，，}側 d{I Zl I く b~ ， I Z2 Iくるi，・ 9・守 ，Zn I く
b:}， then f(z) can be meromo1'ρhically (01' holomorthically) continued to the poly-

disc {， Zj ， くム}j~1' where aj = 2， .・. ， n)，品k and h~ ( k = 1， .•. ， n) are 

real numbers satisf:ving the condition 0 く b~ く b1 and 0く aj<叫くん(j= 2， 
， n)。

1) This is often calIed th日“continuitytheorem" (KontimfItatssatz)。
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By the alternative use of these lemmas， we obtain easily the following theorem 

which is called the expansion theorem of Ho C乳rtanfor the case of holomorphic 

functions。

THEOREM 1. is 伽 a うroterReinhardt 

dornain D， then can be continued to ihe 

least Reinhardt domain containing D. 

Let I(w:t， '" ， Wn， z) be meromorphic (or holomorphic) in a neighbourhood of 

the set {ω= (ω1， ...， E D， z = c}， whぽ eD is a domain in the space C吋W).

For開 chpoint W (町 inD， let R(w (0)) denote the supremum of th巴 setof radii r 

such th旦t1 Is meromorphic (or holomorphic) in 人 z) in a neighbourhood of the set 
{ω =w(O)， jz-cjく Thenω(口)) is called the r adius (or 

holomorphy) of 1 at a point ω(0) with center at the point c. 

In we have proved that the above continuation theorem is equivalent to the 

following assertion. 

11 R(Wl， ョ・・ is the radius of meromor帥y holomorPhy) 01 a mero伺

ω1， ... ， wn， z) at a w， then a 

lixed (ω ， ..⑨ ， w~O)) R(ω1，叫日 ωjo))ts幻rberharmonic in 

W:t. 

Using this result and Theorem 1， we obtain the following 

THEOREM 2. 11 is meromo11うhic(or 幼 ina 1う10ρerReinhardt 

domain D， then can be continued to 

the least complete Reinhardi domain containing D which has the logarithmically 

convex domain of real expression. 

Consequently， it is concluded that the env巴lopeof meromorphy of a proper Rein-

hardt domain D coincides with the envelope of holomorphy of D. 

3. lVIeromorphic comp!etion ()if a clomain 'P). 

A complεx analytic manifold M is call巴dto be of VJ側 k(or strong) Poincare 

if for any merornor・phicfunction 1 on M thereεxist holomorphic functions g and 
h 011 M such that 1 = on 1l!l in addition to this， g and h are coprime at 

each point of M). From Hitotumatu-Kota any Stein manifold is of weak Poincarる

type. It is e乱syto s邑ethat for any domain ({J) ov巴ra Stein manifold， D is of 

weak Poincare type if and only if the of holomorphy of (D，タ)coincides 

with the envelope of meromorphy ofψ). 

Using Lemma 1 and a rεsult of DOCqlはi紅白Grauert[2J， wεhave the following 

THEOREM 3. Let (孔料品ea domain over a Stein manifold， V be a family 
meromorphic functions 0幻 Dand (A'il" D'iJ， ({J&) be the enveloρe of meromorphy of 

同 withr吋 ectto V. Then品 isa Stein 
From Theorem 3 and Hitotumatu-Kδta [3J. we havεthe following 

THEOREM 4. Lef be a d，ωnain 0むera Stein manifold. The1官Dis 

weqk Poincm活
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As a imm巴diateresult of Theorem 4， we obtain 

THEOREM 5. Let (D， rp) be a domain over a Stein manifold. Then the envelote 

of holomoゆhyof (D， rp) coincides with the enveloρe of meromorthy of (D， rp)， 

EStecially any meromorthic function on D can be meromorthically continued to 

the enveloρe of holomorρhy of (D，ヂ).

Consequently， from Theorem 3， [lJ and [2J we obtain 

THEOREM 6. Let (D， <p) be a domain over a Stein manifold. Then the follow-

ing four conditions are equivalent: 

1)， (D， rp) i・san envelolうeof meromorthy with restect to a family of mero同

morthic functions， 

2)， (D，判 isa domain of meromorthy. 

3). (D，ψ) is a domain of holomorthy， 

4)， D is holomorthically convex. 

Full particulars wiU soon be reported in Kajiwara同S乳kai[4 J ancl Sakai 。
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