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1. Let D be a domain in the complex z-plane and 7 be a boundary component of
D consisting of a single point. The component 7 is said to be weak if its image under
any conforml mapping of D consists of a single point. If 7 is not weak, then we say
that 7 is unstable (Sario [14)).

Consider circles ¢,(v==+1,=+2,.--) with centers £, on the real axis of the z-plane
such that they are disjoint from each other and cluster to infinity z = eo from the both
sides of the real axis. Here, without loss of generality, we may assume that &_,_4 <&_,
<0<E€, <€, for every positive integer v. Let B the fundamental domain, bounded by

c,(v==+1,+2 ---), of a properly discontinuous group generated by the hyperbolic linear

transformations with real coefficients
(1.0 ¥ =S =-L2tE (v=rt1, 22,2,

each of which for every v transforms the outside of ¢-, into the inside of c,.

The purpose of this paper is to investigate the relation between the weakness of the
boundary component eo of B and the parabolic type of it defined by the function which is
generated from I' ([4],[11]), and to get the sufficient conditions for it to be parabolic.

2. Consider the Poincaré theta-series of (—=2)-dimension

dS2)
dz’

@D @)= p2 HLS(2)]
where the kernelfunction H(z) is a real rational function whose poles are in the set

B=BU ( 6 c‘,>. It is well known that the series (2.1) converges absolutely and uniformly

vV =-—00
in the complement D* of the set of singular points of I', with respect to the z-plane, and
defines a function meromorphic in D¥.  For each transformation of I', we have the well
known differential invariant

2.2 @(S(2))dS(2) = @(2)dz.

This invariant is called an automorphic differential. The function
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2.3) 1= f @(2dz

is obtained by integrating the automorphic differential along an arbitrary path in D¥.

For any S(z2)&T, the following relation
(2.4) IS =I2)+k,s
is satisfied, where %, is the additive constant which depends on S(z).

Now, if we choose as a kernelfunction

1 1

z—a z—b "’

(2.5) H(z)= (a < b, real, a, b € B),

then we obtain the following analytic representation of I(2) :

_ S(z)—a  S(x)—a~_ —S(a) . z—(a)
2.6 I=3og[ 35575 sy = Rlee =5y =gy

In what follows, we assume that z, is the origin z=0 for convenience.

The following two cases (i) and (ii) occur according to the positions of @ and b.

(i) The case where ¢ and b are congruent with respect to some generator of I', that
is, b=S,(a) for v. In this case, the poles of different terms of (2.6) are canceled each
other in pairs and we obtain a finite integral in D¥*. Moreover, we can easily see that
I(z) depends on the pole ]v=——%“~ of S,(2) but does not depend on a. If we denote

such an I(2) by ’

2.7 0.D= (@ 1) d

then we have a squence of functions {¢,(2)} (v=1, 2, 3,---). If §,=—£&_, and if the
radius of ¢, equals that of c¢_,, then the function ¢,(2) is a real elementary normal
integral of the first kind in the sense of L. Myrberg [6]. We call ¢,(2) a real normal
integral of the first kind.

By an easy computation (Burnside [4], P. J. Myrberg [9, 111) we obtain the relations

2.8 fc de,=2mi, fc dg,=0 Cptn).
v 3

If 7, is a Jordan curve which joins two equivalent points on circles ¢_, and ¢, in the

upper half of B, then the period

2.9 = f dg,
T

of ¢, along 7, is real. By a simple calculation it holds the symmetric relation

CZlO) Tuv =Typ.

(ii) The case where ¢ and b are not congruent for any generator of I'. The poles
of different terms of (4) cannot be canceled each other. We denote such an integral I(2)

by ¥4»(2) and call it a real normal integral of the third kind (P. J. Myrberg [10,11,121).
It has the following properties :
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1" %.»(2) is regular in B except at ¢ and b, where it has logarithmic poles with
residues—1 and 1 repectively.

2° The periods of ¥,,(z) along ¢, and 7, are

(2.11) J d tac=0 (v=ct1, 2,
Cy

and

(2.12) J dra@=e.—pu@ =1 2.
Tv

3. Let B, be the upper half of the fundamental domain B. Any branches of ¢,(2)
and Y,;(z) are single-valued and regular in B, by the monodrnmy theorem. We take
the branches of ¢,(2) and ¥,,(2) such that ¢,(0)=0 and %,,(0)=0 and denote them by
¢,(2) and ¥,,(2) again. Let us consider the images of B, by them. The function ¢,(2)
is real on the intersection of B with the part of the real axis between ¢, and c¢,. The
imaginary part of ¢,(2) increases by m, when z describes the upper half circumference of
¢y or ¢-,. According as the origin 2=0 is contained in the interval [, b] or not, ¥,,(2)
is real on the real axis in B inside or outside [@, b]. The imaginary part of ,,(2)
increases by —m or m in the former and by m or —n in the latter respectively, when z
passes through z=a or z=5 in the positive direction.

We see that w=¢,(2) =u,(2)+w,(2) maps B, conformally onto the rectangle a,< u,
<a,+rt,,, 0 <, <m with vertical slits starting from the upper and lower sides and
corresponding to the upper halves of all ¢, except for g=v. And w=¥,,(2) =1.,(2)+
W, (2) maps B, conformally onto the strip domain —oo < #,;, < oo, 0 < v,, < n with
vertical slits starting from the upper and the lower sides and corresponding to the upper
halves of cp(pu==+1, *2,---). (Fig. (a), (b))

As to these slits, there are two cases : these slits cluster to a point from the both
sides or not. In the former case we say that the type of ¢,(2) or ¥,,(2) is parabolic and
in latter case we say non-parabolic.

Then we obtained the following results ([11) :

Theorem 1. If ¥..(2) is parabolic with respect to some (a, b) (—oo < a < b < ea),
then Y.(2) is also parabolic with respect to any pair (a, b).

In the case where @ and b are congruent with respect to some generator S,(z)€ I,
we can prove the following ’

Theorem 2. Whether the type of ¢,(2) is parabolic or not is independent of v ; more
precisely ¢,(2), (v=1, 2,---) are all parabolic or all non--parabolic.

From the above theorems we find that the type of ¢,(2) or %.»,(z) depends on the
behavior of circles in the neighborhood of oo, that is, the concept of the type of ¢,(z) or
Ya»(2) is a local property. Hereafter we say that the component eo is parabolic or non-
parabolic according as the type of ¢,(2) or X.,(2) is parabolic or non-parabolic.

Considering the images of B by e?v(*) and e**¢*?, we find that they are a ring

domain and a plane slitted along the concentric circular arcs, whose centers are at the
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origin and which are symmetric with respect to the real axis, since B, and B; are symmetric
with respect to the real axis. (Fig. (¢) (d)).

T T TTT]

—

(b)

e -

(e) (@
Fig.

4. Let us consider the relation between the weakness and the parabolic type of the
component e,

By a canonical conformal mapping, B can be mapped onto a plane domain slitted
along an infinite number of concentric circular arcs symmetric with respect to the real
axis whose common centers are the origin, where the component oo corresponds to the
origin.

Sario ([14]1) proved that the necessary and sufficient condition that the component oo
be weak is that the circular slits converge to the origin.

But in our case B can be mapped by e ¢v(*> and e¢#-:(*) onto a ring domain and a
plane domain slitted along an infinite number of concentric circular arcs with common
centers at the origin symmetric with respect to the real axis, which converge to the real
point different from the origin. (Fig. (¢), (d)).

Then the following question arises : Does the weakness equal the parabolic type ?

Since the parabolic type is a local property, we may treat the problem in the
neighborhood of the accumulating point of slits of the rectangle and the strip domain
with slits starting from the upper and lower sides, which is the image of B by w=¢,(2)
and ¥,»(2). By a suitable linear transformation, the accumulating point of slits is
carried into the origin. Then we may investigate the parabolic type and the weakness in

the neighborhood of the origin in the plane slitted along slits being symmetric and
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orthogonal to the real axis and converging to the origin from the both sides.
In my former paper ([2]) we treated such problem.
Let S,(n=1, 2,---) be a sequence of slits being symmetric and orthogonal to the

positive real axis of the complex w-plane and converging to the origin O :w=0. We
delete the set U S, U {O} from the w-plane and denote by D the resulting domain.
n=1

Then we proved the following :
Theorem 3. If S.(n=1, 2,---) are segments : x=a,(>0), |y | < hn satisfying 0 <
Anty < Gn, lim a,=0 and
n >0

4.1 ho < G tan a=h,’

{ .
for some fixed a (0<a <%), then O is a weak boundary component of the domain by

deleting GIS,LU {0} from the w-plane.

Moreover we showed that in the case when segments in our Theorem 3 do not satisfy
the condition (4.1) the origin O is not always weak.

1 \»
) @200

< p < 1), then the origin is an unstable boundary component of the domain obtained by

Theorem 4. If S.(n=1, 2,---) are segments : x:~111—, |y Igc(

deleting DIS,,,U {01} from the w-plane.

Recently the extensions of the above theorems were .Obtained by the author and K.
Oikawa ([31).

Our problem is solved completely. Because we may divide the real axis into the
positive and negative ones and use the above theorems. Therefore the parabolic type is
different from the weakness and is divided into the weak and the unstable parts.

5. Now we want to get the sufficient condition for the componet oo of B to be
parabolic. From Theorems 1 and 2 it is enough to decide the parabolic type of ¢,(2).

In difference with the symmetric group, asymmetry of the arrangement of circles {c,}
with respect to the imaginary axis becomes a subject of discussion.

Let us denote the parts of the real axis between the ¢, and ci¢y4+n by ki, of which
endpoints are ey, and ercsyr+. Without loss of generality we may assume that the radii
R., of circles ¢y, are bounded, that is, R., <<1. We describe the circles ¢’:, whose
diameters are the intervals k., between ¢ty and ci¢y+p. Suppose that the radii R's, of
¢’+, are bounded, that is, R’+, < 1. The hyperbolic linear transformation 7',(z) which
transforms ¢/—, to ¢’, is decided.

‘We describe the circle orthogonal to the real axis
G.D H, ™5 |z—a,(®)] =p,(&), (0=t 1),

which go through a point p’_, on ¢/_, and the corresponding point p’, on ¢’, by T,(2).
This circle H,¢¥) intersect the real axis at the points e_,(¢) and e,(#), where the centers
H,¥> and H,¢¥) are
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_ e te—p _ Cayr1Te—(ovt1)
G2 - a=-2ten g0 Etant),
We can easily see that
.3 P < P, (<L) 5 py(D) < Py, (v < V5

puDes,  (vreo).
Let

.0 LCou®d= [ 1d 9

be the length of the image of the upper half circle of (5.1) by ¢,(z). This is the 1ength
of the curve which joins two points on the horizontal side of the rectangle that is the
image of B, by ¢,(z). If we denote a point on H,> and the derivative a,(#) with
respect to p,(%) by

.5 z=a,(D+pu(Dete, 54— a,/)

respectively, we obtain by Schwarz’s inequality

{L(Pv(t))}2=(fH (V)|Son'CZ)| |dz| )2 < fH (v)| ¢ (2% 1—a,’(t) cos al||dz

(5.6) f |dz|
“J 1—a,’(®) cos a
H,M™

Since |a,’(#)| < 1, it holds

{LCPvOD)}Z 1— |av,<t)| ’ 2 7
6.7 A ) < fH,Lg" @2 1—a,/D cos al |dz].

Suppose that
5.8 Lip,(#))=¢€>0.

Multiplying dp,(#) in both sides of (5.7) and integrating from p,(0) to p,(1), then we
have the following inequality,
vyco
G0 f XL dpuD < [ 194@D1* dA=D b, enrn @)
B(€3y,62v+1) ‘
where B(e,,, egv_H) is the part bounded by H,¥>, H,(*> and the real axis, and dA= |1 —

a,’(t) cos al |da| |dp,(D)] is its surface element and Dgery. esin (gan) is the area of
the image.

Summing up from 1 to N with respect to v we obtain

O]
1—|a,/Ct &4
G0y 31 (A=lEDL dp, (1)< B Dy, sy @S Do (Po) =7 T
P, (0)

v

The right side of (5.10) is finite for fixed #, since Dy, (¢n) is the area of the rectangle.
If, under (5.9), :
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N
o (Lola @] —co
(5.11) p3) f IO

v
it contradicts with the fact that Dy, (¢.) is finite. Therefore if we suppose (5.11), then
there exists v, for any small ¢, so that L(p,(£)) < ¢ for any v > y,.

Then we have the following

Theorem 5. If (5.11) establishes, then the boundary component o is parabolic.

Now let us consider the property of a,/(£) (0<|a,”(H)| < 1) in (5.10) which express
the variation of the center caused by the variation of the radius of H,™ and provides
the asymmetry of circles {c.,}, (v=1, 2,---) with respect to the imaginary axis.

Denote by 6,(#) the function

1

(5.12) A= Ta/D]

O<t<D.

P. J. Myrberg inverstigated the property of 6,(¢#) in his paper ([8]) about the type
problem of a simply connected open Riemann surface. If we denote by m, the smaller

distance from the pole of 7',(2) to e-,, and e—¢sy+y), we have

(5.13) 0,() < cd(v),

where ¢ is a constant and ¢(v) is

Rv/ R"v, ZRV/— v ?
(56.14) J(v)=max ( R.7" R )'( m ) ,
which is independent of t. If we suppose

(5.15) 90 < log pu(D,
we obtain from the left side of (5.10)

P, Py
> d py(D = 1—|a/D]
5.16 <co 3 [A=LaDL g6 p).
‘ ’ §1 ’f(o‘)o*'(t) log p,(®) & f (D P
On the other hand the left side is
w0 dp, (D) > Fy® = log p,(1)
v _ — 1 oo Fvh—/
(6.1 é}l f (!)-"v(t) Tog puCE) EI [log log Pv(t)]p o og\g1 log 0,(0)
N0 v
- i log p,(1)—log p,(0)
= tog J1 (1 g o)
If
< >, IOg pv(1>—10g pv<0>
(.18 = log £,(0)

diverges, then (5.17) diverges, hence the right member of (5.16) diverges. Therefore we
have the following
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Theorem 6. If the series (5.18) diverges wunder (5.15), then the component oo is
parabolic.
Especially if we suppose

(5.19) 0<la,/OILk<],
we get
1 _
(5.20) 0,(Hh < q—5 = K.

Hence we obtain the following
Corollary 1. If under (5.19) the series

b pv(1>—pv<0>
(521 DX O)

diverges, the infinity is the parabolic boundary component.

If I' is a symmetric group, that is, =0, circles {¢,} are symmetric with respect to
the imaginary axis. The series (5.21) is modified and we obtain L. Myrberg’s theorem
([61) about the type problem of the real hyperelliptic integral of the first kind as the
special case.

Corollary 2. (L. Myrberg) In the case that I' is a symmetric group, if the series

(521> % €ay+1 — €3y

divereges, the component oo is parabolic.

6. Remark. Savage ([15]) got many criteria for boundary component to be weak.
Let us consider the relation between L. Myrberg’s criterion and Savage’s relative width
criterion.

Consider a doubly connected bounded domain G of the complex plane. Let 7y and 7,
denote its boundary curves. Let d be the distance between the closed sets 7; and 7..
Consider all rectifiable curves ¢ in G which separate 7, from 7,, and which are at a distance
=>d/2 from y; U 7.. Let L be the greatest lower bound of the lengths of these ¢. We
define the relative width @ of G as w = d/L.

In the case that I' is a symmetric group, we denote by {G,} a sequence of ring
domains converging to oo, where the boundary curves 7., and 7.,4; of G, are circles

whose common centers are the origin and whose radii are R,,=¢,, and Ry,+{=¢€sy+1.

Then the relative width w, of G, is (esy+1—€3y,)/m(€sy+1+¢2,). By Savage’s criterion,

if 37 w, is divergent, then the component oo is weak. Since 3 (€sy4+1—€s5v)/€sy+1+€5y)
V=1

and 3! (eyy+1—€3,)/€s, diverge simultaneously, L. Myrberg’s criterion is the weak cond-
v=1
ition for the component eoo.

In the case where I' is not symmetric, it is not clear whether the sufficient conditions

of Theorems 5 and 6 are weak for the component oo or not.
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If they are weak conditions, what is the conditions that is parabolic and unstable for
the component oo ?

7. Let us consider the relation between the boundary component of the parabolic
type and the concept of a regular and an irregular boundary component in the potential

theory.

In order to simplify the observation, we transform the fundamental domain B by § =
—%. Then we get the fundamental domain B* bounded by circles which converge to

the origin from the both sides.

We describe any auxiliary closed curve 7: which surrounds the origin and the isolated
boundaries of circles and does not intersect them. Let w(&) be the harmonic function
which takes the value 1 on 7¢ and 0 on the other boundaries contained in 7.

We say that £=0 is a regular boundary component, if there exists some neighborhood
U(CO) of the origin for any € > 0 so that w(§) < € for each € € U(O) N B¥, and otherwise
§=0 is an irregular boundary component.

Let w=f(€) be a single-valued, regular and univalent function in B¥. The concept
of a regular and an irregular boundary component is a local property and conformally
invariant. If we denote by 7, the image of 7¢, the harmonic function which takes the
value 1 on 7,, and 0 on the other boundaries contained in 7,, is @(w)=w( f(§)).

Then we have easily the following

Theorem 7, If the origin € = 0 is irregular, then it is weak and hence parabolic.

Proof. Let {7.,"}, (=1, 2,---) be a sequence of the closed curves contained in 7,,

which converge to the boundary component I',=lim 7," corresponding to £=0 and do
nF>oco °

not intersect the other isolated boundaries.
If we denote by Va(w) the function which is harmonic in the domain bounded by 7.."
and 7, and takes the value 1 on 7, and O on 7, and further by w,(w) the harmonic

function which takes the value 1 on 7,, and 0 on 7,” and the other boundaries, then we

have
7. C V() = 0n(w).

If £=0 is unstable, that is, £=0 corresponds to a continum I',, by some w= f(£), both
Va(w) and @,(w) converge uniformly to the harmonic functions V(w) and @(w) which
are not constant and we have from (7.1)

7.2 Vw) = w(w).

If we denote by B,* the image of B*, since there exists some neighborhood U(T,) of
I, for any € > 0 so that V(w) < ¢ establishes in B, N U(I,), then we have w(w) < e.
This fact contradicts with the hypothesis that £=0 is irregular. q. e. d.

Generally let us consider an infinitely connected domain bounded by a sequence of
circles ko(n=1, 2,---) which do not intersect with each other and converge to £€=0. In

this case we have the sufficient conditions for £=0 to be regular or irregular (L. Myrberg
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7.
Denote by 7, and a, the radii of %, and the distances from £=0 to the centers of

them respectively, where 75 < @n, @n < @n-y and lim a,=0. By L. Myrberg’s criterion, if

n>o0

the series

oo

log an
@.8 azh log 7a

converges, then £=0 is an irregular boundary component.
Then we have the following
Corollary. If the series (7.3) converges, £E=0 is weak and hence parabolic.

_ 1 _ 1
Example An=— = Tn=—ir (k>1).

The converse of Theorem 7 does not necessary establish. Even if £=0 is parabolic,

a regular case may occur.

Counter example. Let Su(n=1, 2,---) be segments : x=a,(<0), |y|< hn satisfying
0 < @nyy < @, lim @¢,=0 and

P00
(7.4) hn=0, tan a

for some fixed a(O < a <%) Then from Theorem 3, £=0 is a weak boundary comp-

onent of the domain obtained by deleting G S, U {O} from the £-plane. On the other
n=1

hand we have

log Z”
(7.5) lim ——1"~=0
700
log—hn

and it is the sufficient condition for £€=0 to be regular (L. Myrberg [71).

From the above and the section 4, an irregular component is the strongest and a
parabolic component is the weakest among three concepts.

8. In this section let us seek for the sufficient condition for £=0 to be non-parabolic.
To deal with ¢,(€) in B* is very difficult in calculation. So we map B* conformally
onto a domain B in the complex z-plane, of which boundaries are slits on the real axis,
by Koebe’s method which use the series (Koebe [51). The upper and the lower halves
of B are marked with B, and B, respectively and the notations of the endpoints of slits
are the same as B¥*.

Let £=k(2) be the function which maps B conformally onto B*, that is, the inverse
of Koebe’s function. Then instead of considering ¢,(€) in B*, we may consider the

composed function ¢n(2) =¢a(k(2))=Un(2)+iVa(2z) in B. We denote the intervals among
an infinite number of slits in order by

b1(°°, ez), b2(e37 eg),"', bv(e2v—l’ e2y>’ """ -
b—1('—°°, e—2>’ b—ZCe—:Z’ 3—4),"', b"v<e—(2v‘1)a e—2v)’ """ .

(8.1
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We define a single-valued, bounded and harmonic function V,(2) or V_,(z) in a domain
B, or B_, bounded by only two ‘slits (b,, by) or (b-,,b—y) which satisfy the following
condition :

— {O, on by
(8.2) Vi(z)= 1

T, on byy.

Evidently we have the following inequality
(8.3) Va(2) < v§+1 (V,(2D+ V_,(2)).

In order to get the value V,(2) iﬁ the neighborhnnd of z=0, we may evaluate
V,(2) and V_,(2) there. For this purpose we make use of the elliptic integral. For

converience we transform the variable in the following manner. At the first we carry out

§£=2z%in B, or B-, and the second we do the inverse 7= é in the transformed &-plane.
Since
(8.4 VD =V,(2), V_,*(D=V_,(2)

in 7-plane, we can calculate V,*(%) and V_,*(%), if we choose the constant ¢, so that

the period of the elliptic integral is 7 in the following :

f-—m dx
0 W/xcx“‘az><x_a2v—l)<x—a2v) ’

(85) Vv*c—oo)r—‘cv

o a = dx
8.6 V., *(+e0)=n+c, ,
.6 ¢ )= "fagviCx—dz>(x*“2v-1)(x_azv)
. 1 1 .
where 7=x+iy and a»,= —5— and do,—y=— Since
€2y €72y ~1
(87> Vv*(—‘”):vv*(‘i‘w):
then we have
- dx dx
(8.8 Cy —_—— {-l- Cy _— ' =T,
f‘) 1/ azvV

We use a similar estimation as in L. Myrberg ([61).
Suppose that

<89) a2v=a2v"l+dva Cdv < 1)

Then we have

(8.10)

: <k il
fw dx ‘ ! IOg dv i
Cy =

Qay ’\/

where % is a constant independent of ». From (8.8) and (8.10), we have
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(8.11)

- ax log sy -1
C"f v ‘g”k | log d, |
0

Similarly to the calculation of V-,(2) we have

¢,/ j;w%ﬁ_

where &’ and d-, are constant as in (8.9) and (8.10). From (8.11) and (8.12) the
following inequality

<k 10g a-(2v—1)

8.12 _ 98 Y-CGv-n
(8.12) ST Tlog doy |

o log @y -, log “—(2v—1))
%
(8.1 v <alk 3 (T T e )
establishes, where £* =max(k,k”). Under the condition
2 log a5, -y log a—(2v-1)) 1
(8.1 I R ) A
we have
(8.15) Va(0) <m

and hence z=0 is non-parabolic.

Suppose that the series

= log Qgy -1 log a—(2v-1)
(8.16) = ( [log dy | T T log d- | )

converges. Then taking enough a great number n,(k*), for n=>n,(k*), (8.14) and
hence (8.15) establish.

If we return to the z-plane, (8.16) is transformed into

— log 1/e%, -4 log 1/€*-¢zy-0
RN [Tog(1/e%,—1/%-D 1 T l10g(1/ez—2u—1/e2~m—1>)I)'

To simplify the form of (8.17), if we denote 1/e,, -y and 1/e_sy-1) be Psy—1 and p-¢zy -1

respectively, we have

hnd log poyv-1 log p-cav-n
(8.18) 2 3 ( [Tog (Proy—Prov-0 | | 110800 2y ~ov—10) | )

Under the hypothesis p2y —p%y—y < 1 and p2—gy —P?—ov-1» < 1, (8.18) and
= log pay -1 . 10g p-tav-v )
8.19 (
C ) §2 | log(Dov —Pov-1) | + | log(p-oy —D-c2v-13) |
are simultaneously convergent. Then we have the following
Theorem 8. Under the hypothesis that (Poy—DPov-1), (P-gv—D-2v-n) <1, if (8.19)
is convergent, then the component z=0 is non-parabolic and hence unstable.

v=2

In the special case of Theorem 8 when I' is a symmetric group, we have the following
Corollary. (L. Myrberg [61). If

z log pay-1

(8.20) ,,2=2 | 108(?2;; —Dav —1)7|;
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converges under ps,—psy -1 < 1, the component z=0 is non-parabolic and hence unstable.
1
example. Dav-1=Y, Doy —Dov-1 = (k> 1.

Remark. Oikawa proved the following ([13], Theorem 8) :
Let S,(v=1, 2,---) be a sequence of closed intervals [€,,+1, @.,] on the positive real

axis of the complex z-plane, where 0 < 5,4y < €5, < €3,—y <1 (v=2, 3,---) and lim e,,
Vv > oo

=0. Then, under the conditions

8.21) lim -&v=1 =1
C
v Eay
and
(8.22) Loyt > 146> 1,

€2y+1

the component z=0 is weak if and only if

(8.23) > — oo,
v=1 log 2

€ay—1— €3y

But the above Corollary is modified to the following :

Under the condition

(8.24) —eevv!Tve_?T <1,
if -
8.25) - Sy | los eﬁ'e““‘ L o,
o log e2v—li’e2v

then the compénent z=0 is non-parabolic.

It is easily seen that (8.24) is stronger than (8.21). Then from the above we find
that under the conditions (8.22) and (8.24), if the component z = 0 is parabolic and
unstable, (8.25) is divergent, but (8.23) is convergent.
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