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1. Introduction.

The attempt of establishing the spatial isoperimetric inequality has been made in
various ways as is well-known. Among these, G. Bol [8]* dealt the problem with the
internal parallel surfaces of a closed convex surface. A. Renyi [11] discussed com-
pletely the problem in the Euclidean plane Eo by improving Bol’s treatment, and gave
an explicit positive integral representation of the isoperimetric deficiency. In a similar
view the spatial isoperimetric problem should be completely discussed by the method
of internal parallel surfaces. For the purpose, we shall first give the differential and
integral formulas for the enclosed volume, the surface area and the total mean curva-
ture of a closed convex body. Our treatment is distinguished by the introduction of the
form-figure and the characteristic function of a closed convex body from G. Bol’s paper

([3] and [4]).

2. Surface and internal parallel surface.

2.1. Internal parallel surfaces.

The definition of a parallel surface of a given closed convex surface K can be formulated
in various ways. By certain definitions, it is possible that the internal parallel surface
may not be convex. So, in order to obtain always the convex internal parallel surface
of K, we define it in the following manner. * *

For the purpose, let us define the positive direction towards the inner side of a closed
convex surface K on each surface normal. Taking a half space which is separated by a
supporting plane of K and contains the corresponding positive surface normal, we define
it as the positive half-space referring to the supporting plane. Now, let us move all
supporting planes of K by the same distance t (Z>0) along the corresponding normals.
Then, if all the positive-half spaces referring to the moved supporting planes have an
intersection, we call the surface which encloses the intersection, as “the internal parallel

surface of K at the distance ¢t and denote it with K(t). By the difinition, K(0) is K
itself.

* Numbers in brackets refer to the list of references at the end of the paper.
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2.2. Internal parallel convex polyhedra.

Let P be a convex polyhedron in Eg and let us consider all the internal parallel
polyhedra P(t) of P. For sufficiently small value of t, the number of vertices, edges
and faces of P(t) is the same as those of the original polyhedron P(0) respectively.
However, as the value of t increases, the numbers of these elements of P(t) decrease in
general, namely, some of edges or faces may shrink to a point or points when a “critical
value” of t is reached. Each of such critical values of t corresponds to a radius-length
of one or many spheres which touch internally to four or more faces of P(0). Let us
denote such values of t with p; (i=1,2,...) in the increasing order and with r the length
of the radius of the greatest inscribed sphere in P(0). The number of the greatest
inscribed sphere of radius r is determined by the form of P(0). That is to say, the
number is one or infinite. In the latter case, their centres stand on a line or a plane
due to the convexity of P(0). Then, the interval [0, r] is divided into a finite number
ot the subintervals by o (i=1,2,...). In any case, when the value of t starting from 0
increases, the number of vertices, edges and faces of P(t) decrease, but are constant at
the the same interval of t, say p; < t < pj+y (i=1,2,...) and the form of P(t)
degerierates gradually at every critical value of t. When t converges to r, P(t) converges
to a point, a line-segment of finite length or a plane segment of finite area. Consequently,

the internal parallel polyhedra P(t) are defined only at the interval 0<t=<r of the
parameter,

3. Differential formulas.

3.1. Sequence of internal parallel polyhedra.

P(t) (0 < t < r) is an internal parallel polyhedron to P(0). We shall study the
change of the value of the enclosed volume, the surface area and the total mean
curvature of P(t). We start with the enclosed volume V(t) and the surface area S(t)
of P(t) as defined.

In a proper way, let us mark the edges of P(0) with numbers and keep the numbers
to the corresponding edges of P(t). [;(t) is the length of the i-th edge of P(t) and
7:(t) its dihedral angle. Then, taking P(t) and P(t + .J t) which belong to the same
layer of the internal parallel surfaces, the difference of their volumes V(t) and V(t+.Jt)
is expressed as follows,

V() =V (t+ ) =S(t+ dt)edt — (4200t + dytand + D52 {1,001, t+ 40 Jtanl . (1)
Hence, 1' 1 o
V! ()= —S(t). (2
Precisely, V(t) is differentiable over the interval [0, r] except for the critical values
i (i=1,2,...) and we should take the left-side diftferential coefficient of V(t) at every
critical value p;.

Next, about the surface area S(t), we have
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S(6) ~S(t+ ) =250 (t+ I tanfieft — St {7:6) ~ 1t + i) Jtanf. (B

Hence

§'(t) =~ 22 (Htanh. D

Prof. Blaschke [2] defined the edge curvature M of a convex polyhedron as
=;21 Liyie 5

Similary, let us denote the following quantity with M, namely

M(t) = 27;(t)tan] . (6)*
Then, definitely

M(t) = M(t). N
Or we have by (5) and (6) ‘

M(£) =M(t)+ 2Z;(t) (tanh —5). ®
Now, the above formula can be written as follows,

S (t) = —2M(t). 9

In this case too, we should take the left-side differential coefficients at the critical values
0i (i:I,Z,...).
Next, the derivative of M(t) is calculated as follows. First we have
M4 -M@E) L) L+ 4) i
—— = b ~tan 5" (10)

The right side of (10) is equal to the surface area of a polyhedron /7(t) which is
constructed with the planes, each of which is tangent to a uﬁitsphere and parallel to
the corresponding face of the internal parallel polyhedron P(t) respectively. Now we
give the following definition. A polyhedron 11, which is circumscribed to a unit sphere
and each of whose surfaces is parallel to the corresponding face of P respectively, is
called the form figure** of the convex polyhedron P.

Now, the right side of (10) is equal to the surface-area of the form-figure [I(t) of
P(t)***. Consequently, its value is constant at each subinterval (p;, p;+1] between
two adjacent critical values.

And, excepting the critical values i (i=1,2,...), we have

M/ (t) = —r(t), (11
where
e (1) =2 b, (12)

and we take the left-side differential coeflicient of M(t) at every critical value p;

(i=1,2,...). Let us call x(t) the characteristic function or characteristic of the convex
polyhedron P (t).

* G. Bol denoted M with M#* [3], p. 32.

#k Th. Kaluza called the corresponding figure in the plane by the same name.

#3%*%G. Bol and A. Renyi defined the characteristic function of a polygon as the double area of the
form-figure in E2. But it bis better to difine it as the periphery of the form-figure in order to

generalize the dimension of the space.
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Hereupon, G. Bol* denotes the corresponding quantity with C*, and k(t) is different
from the total curvature C(t)=47E(K(t)), where E(K(t)) denotes the Euler characteristic
of K(t). He says that it is not easy to give a simple geometrical explanation for C* and
it is of no importance even if C* takes any value.

But we can summarize the above result as follows.

Tureorem 1. The characteristic function k of a convex polyhedyon P is equal to
the surface avea of the form—figure Il of P.

3.2. Characteristic function of P(t).

If the original polyhedron P(0) is circumscribed to a unit sphere of radius r, the
form-figures /1(t) of P(t) (0< t<r) are unchangeable, so that the characteristic
function £(t) of P(t) is constant. In general, the number of faces of [1(t) decreases
as t increases, namely the characteristic function is an increasing function. To say
more precisely, if p; is one of the critical values of t and t; L <pi <ty the number of
faces of the form-figure [I (t;;) will be identical with one of [I(t;,) or more than that.
Therefore

e(t; ) < k(ti,), 0<t, <pi<t,<r (13)

Or, we can state as follows.

Tuvorem 2. The characteristic function k() (0<_t<71) of a convex polyhedron
P(t) is a monotone increasing function.

Moreover, the characteristic function is a step function which is discontinuous at finite
points which correspond to the critical ualues of t.

Next, comparing the surface area of the form figure [I(t) with that of the unit
sphere, we obtain the following theorem.

Turorem 3. The value of the characteristic Sunction £(t) of a convex polyhedron
P(0) is greater than 4r, that is,

£(t) > 4, 0<t<r). ery;

Moreover, #(t) being an increasing function, it follows by (11) that M(t) is a concave
function.

On the other hand, S(t) and M(t) being non-negative functions, it follows by (2)
and (9) that V(t) and S(t) are convex functions for 0<_t<_rt [7].

4. Closed convex surface and formulas.

4.1. Approximation by convex polyhedra.

Let K be a closed convex surface with inner points in the Euchdean three-space Es.
By virtue of the theorem of choice of Blaschke [1], we can take out a partial sequence
{P,} of convex polyhedra which converge to K. Thus we have

lim P,=K. (15)

n—>00

Now, if the enclosed volume V,, the surface area S,, the total mean curvature M, and

* See [3] p. 33 and [6] p. 31.
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the characteristic function &, of P, have V, S, M and & as their limits respectively, that
is,

nlim V.=V, lim S, =S, lim M,=M, lim k,=*r, (16)
we define V, S, M and » as the enclosed volume, the surface area, the total mean
curvature and the characteristic function of K, respectively.

In like manner, the inner parallel surface K(t) of K can be approximated by a
sequence {P,(t)} of convex polyhedra. At this time, the supremum r of the parameter
t is equal to the radius of the greatest sphere which is inscribed to the original surface
K(0).

For the purpose of establishing the differential formulas of V(t), S(t), M(t) of K(t),
let us quote the following lemma of F. Riesz [12]:

If a sequence of convex functions converges to a limit function, the derivatives of
the functions of the sequence converge to the derivative of the limit function, provided
that latter exist.

Since V,(t), S,(t) of P,(t) are convex functions and M(t) a concave function in
[0, r] (8§ 3.2.), we can obtain the following theorem.

Tueorem 4. If V(£), S&), M(t) and t(t) are the enclosed volume, the surface
area, the total mean curvature and the characteristic function of an inner parallel
surface K(t) of the closed convex surface K(0), we have

V' (t)=—5(t), anm
g'(t) = —2M(b), (18)*
M (t) = —r(t) (19)

excepting the critical values in the interval [0,1] and we take the lefi-side differential
coefficients of them respectively at the critical values.

4.2. Charateristic function of K(t).

When a closed convex surface K(t) be approximated by {P,(t)}, the form figure
I1(t) of K(t) should be defined as the limit figure of the form figure [1,(t). Namely,
11(t) is circumscribed to a unit sphere and each supporting plane of [/(t) is parallel to
a supporting plane of K(t). Hence, we have the following theorem owing to Theorem 1.

Turorem 5. The characteristic function k(t) of a closed convex surface K(t) is,
in value, equal to the surface avea of the form-figure I1(t) of K({&) for 0 < ¢t<r.

Now, if a closed convex surface K is composed entirely of regular points, its form-
figure /I coincides with the unit sphere ([5], pp. 13-14), and its characteristic « is
equal to 47. But so far as K has singular points, that is, angular points, or edges, the
form-figure /I has singular points corresponding to them, so that the characteristic &
is greater than 4.

identical with M for the surface without edge.
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The form figure [1(t) of K(t) in 0 t<r changes its form at every critical value
of t which is equal to one of the principal radii of normal curvature, and the charac-
teristic function x(t) corresponds to the change by increasing its value. Hence, referring
to Theorem 2 in case of P(t), we have:

Tueorem 6. The characteristic function «(t) of a closed convex surface K(1) is
a monotone increasing function for 0 1{<r.

We can cite following examples of such surfaces whose characteristic functions are
constantly equal to 4r for 0 t<{r;

(i) A sphere,
(ii) A convex hull of two spheres w'th different centres,*
(iii) A convex hull of a torus, and so forth.
On the other hand, we can give the following examples of surfaces with the pro-
perty that the characteristic function is constant for 0 U t<r;
(iv) A sphere with a hood or hoods* *,
(v) A general cone with a plane end which is bounded by a convex curve,
(vi) A cylinder with two plane ends which are bounded by the same convex curve,
and so forth.

The above justifies the following theorem corresponding to Theorem 3.

Tueorem 7. If k(2) is a characteristic function of a cloced convex suvface K(2),
we have

& (t) =4, 0<t<r (20)

5. Integral formulas.

5.1. A classification of closed convex surfaces.

In case of the closed convex surfaces, the limit figure of the internal parallel surface
K(t) of K(0) as t—r is a point, a line-segment of a finite length or a plane-segment of
a finite area. Now, we give the following definition ([4], p. 40).

Definition. The limit-figure of the internal parallel surface K(t) (t—r1) is called
a kernel of the oviginal surface K. According as the kernel of K is a point, a line-
segment ov a plane-segment, we call it a point-kernel, a line-kernel or a plane-kernel.

Then it is easy to find that the surface with a line-kernel is partially composed of a
cylindrical surface and the surface with a plane-kernel is partially composed of two
parallel plane segments whose distance is equal to 2r,

For example, let K be a cylinder of revolution whose radius be r and height 2h; then,
if b is equal to, greater or less than r, the kernel of K is a point, a line-segment of
length 2(h-r) or a plane-segment of area m(r-h)2, ‘

* It is admitted for the convex hull constructed by three or more congruent spheres with different
centres in a plane.
**%The number of hoods is not restricted to one provided the sphere with hoods retains the convexity

of the surface.



Volume, Surface-Area and Toial-Mean-Curvature 27

5.2. Integral formulas (I).
(i) Taking the formula (19), we have:

M) = [ w(s)ds+ M), 0<t<r, e
t

where M(r) denotes lim M(t). In fact, we can find the value of M(r) as follows:
{—-r

Case 1. The surface with a point-kernel; M(r)=0,

Case II. The surface with a line-kernel;  M(r)=17.5(r), where [ denotes the length
of the kernel and o(r) the limiting value (t—r) of the area o(t) of the form figure*
of the plane curve along which the cylindrical part of the original surface is cut by a
plane at right angles to the kernel.

Case III. The surface with a plane-kernel; M(r)=2U, where U denotes the length
of the perimeter of the kernel.

(ii) Next, by (18), we have:

S() — j: IM(s)ds+S(r), 0<t<r, (22)

where S(r) is zero for surfaces with a point-, or line-kernel and in case of surfaces with
a plane-kernel, it is equal to the double area 2F of the plane-kernel of K(0).
(iii) Finally, we obtain by (17),

A
N

V(t) — J: S(s)ds, 0 (23)

5.3. Integral formulas (II).
We now write down the above formulas under the three cases of surfaces as follows.
Case I. Surface with a point-kernel;

JM(t) - Jr/c(s)ds, 211)
t
]S(t) _9 J " Mi(s)ds, (221)
t
V() = jTS(sms. (231)
t
Case II. Surface with a line-kernel;
M(t) = Jr k(8)ds +1.0(r), (212)
St
J st =2 [ M@©as, (225)
t
lV(t) _ Jrs(s)ds, (235)
t

where [ is the length of the line-kernl and o(r) the plane area of the form-figure corres-
ponding to the cylindrical part of K(t) (t—r).

* We mean by it the same figure as Th. Kalza defined in the plane; see the foot note at p. 3.
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Case III. Surface with a plane-kernel;

_ T
M) = [ e()ds+20, (215)
t
r__
S(t) = 2| M(s)ds+2F, (223)
t
] T
v = | s@ads, (235)
t
where U is the length of the perimeter of the plane kernel and F the plane area of the
kernel.
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