The Science Reports of the Kanazawa University, Vol. III, No. 2, pp. 199-207, July, 1955

On Mean Values and Geometrical Probabilities in E_{n} .

By

Shigeru Oshio

(Received February 3, 1955)

Introduction. In this report V.3, pp.35–43, we treated the subject in the Euclidean three-space E_3 [5].* The aim of the present paper is to generalize my previous result [5] in an Euclidean n-space E_n . For the purpose, we shall first define the uniform-figure-systems in E_n in the same manner as befor, and discuss the subject under classified cases.

§ 1. Definition

1.1. Covering of Euclidean Space E_n .

Let σ_0 be a closed hypersurface in the Euclidean n-space E_n . Let us define a discontinuous rigid motion T_1 which operates upon σ_0 and satisfies with the following condition (a). Let us begin with marking σ_0 at its initial position in E_n . If we operate T_1 upon σ_0 , σ_0 will move to the next position. Again, let us mark σ_0 at such a position.

Let us set the following condition (a), that is; (a) The two adjacent surfaces have a part of them in common but neither of them has any inner point of the domain enclosed by the other surface in common. Let us operate T_1 and T_1^{-1} upon σ_0 in the same direction^{**}) i_1 -times in all, then we obtain a tubiform surface σ_1 which is joined by i_1 -pieces of σ_0 piece by piece. Subsequently, let us define another rigid motion T_2 which operates upon σ_1 in a direction which is independent of that of T_1 and satisfies with the condition (a). Again, operating T_2 and T_2^{-1} upon σ_1 i_2 -times in all, we obtain a leaf-like hypersurface which is composed of i_2 -pieces of σ_1 piece by piece. Let us denote this leaf-like hypersurface by σ_2 .

In such a manner, let us suppose that the construction, by means of which a series $\{\sigma_k\}$ of hypersurfaces and a series $\{T_k\}$ of discontinuous rigid motions of which T_k operates upon σ_{k-1} i_k -times in common with T_k^{-1} and satisfies the condition (α) , are defined, in succession, $k=1,2,\ldots,n$, and a closed hypersurface σ_n is obtained at last. Then σ_n will be composed of $i_1 i_2 \ldots i_n$ -pieces of surfaces congruent to σ_0 , or in other words, the whole domain which is enclosed by σ_n is divided into $i_1 i_2 \ldots i_n$ -pieces each of which is congruent to the domain enclosed by σ_0 without overlapping or without

^{*)} Number in brackets refer to the bibliography at the end of the paper.

^{**)} It can be proved that any given rigid motion in E_n is the resultant of a uniquely defined rotation and a uniquely defined translation along the axis of the rotation.

S. Oshio

leaving gaps. After this construction, if we increase i_1 , i_2 ,... i_{n-1} and i_n to infinity simultaneously, the whole space E_n is covered by ∞^n -pieces of domains, each being congruent to the domain enclosed by σ_0 , without overlapping or without leaving gaps. Now let us call such a construction" a covering of E_n by σ_0 ", the domain ϑ enclosed by σ_0 , "a fundamental cell" in the covering and each domain which is arranged by the covering, " a unit cell" in the covering.

1.2. Uniform Figure Systems

Connecting with the above covering of E_n by σ_0 , let us define the uniform arrangements of figures. For the purpose, let us prepare the following figure-set:

(k) A set $\mathfrak{S}_k = \{f_j^k\}$ of k-dimensional manifolds $f_j^k (j = 1, 2, \dots, p), p \ll \infty$ and the sum*) of k-dimensional measure of $f_j^k (j = 1, 2, \dots, p)$ is finite.

Explaining in detail, the meaning of the above definition is as follows. For k=0, f_j^0 , reduces a point and the sum of zero-dimensional measure of f_j^0 , s is equal to the number of these points, namely p. For k=1, f_j^1 reduces a curve and the one-dimensional measure of f_j^1 is equal to its curve length, and so forth. Now, if we cover E_n by a fundamental cell σ_0 attached with a set \mathfrak{S}^k of k-dimensional manifolds, every unit cell will be alloted with a figure set \mathfrak{S}^k .

At this time, let us select the figure set \mathbb{S}^k in the covering of E_n by σ_0 with \mathbb{S}^k , (β) every figure set at all unit cells may not intersect with any set at another cells. Now, in such a covering of E_n by σ_0 attached with a figure set \mathbb{S}^k , let us call an original set \mathbb{S}^k of k-dimensional manifolds, by the name of "the fundamental figure" and every one alloted to each unit cell, "the unit figure." In consequence, we shall obtain such a uniform arrangement of the unit figure alloted to each unit cell in whole space E_n .

In the end, let us cross out all the covering hypersurfaces, then we obtain a uniform arrangement of a unique figure set \mathbb{S}^k in E_n . Let us classify such a uniform arrangement of σ_k in E^n corresponding to the kind of the fundamental figure (k) by calling "uniform-k-dimensional manifold-system in E_n ". Hence,

- (0) a uniform-point-system,
- (1) a uniform-curve-system,
- (2) a uniform-surface-system,
- (k) a uniform- \mathfrak{S}^k -system
- •••• ••• ••••••

(n-1) a uniform-hypersurface-system.

§ 2. Uniform–Point–System in E_n

2.1 Set of points of a finite number. Let \mathbb{S}^0 be a set $\{P_j\}$ of points P_i $(i=1, 2, ..., \rho)$ which are fixed in E_n and \Re a closed hypersurface whose *n*-dimensional enclosed volume

*) We shall speak it by calling k-dimensional measure of in the following.

is V and which moves in E_n .

Then, using the kinematic density, by W. Blaschke [1]

$$\hat{\mathfrak{R}} = \prod_{i=1}^{n} \hat{s}_i \prod_{j=1}^{n-1} \hat{\omega}_j \quad , \qquad (1)$$

we can obtain the following formula, which represents the total measure of positions of moving \Re by which a fixed point P is contained, that is,

$$\int_{p \subset \mathfrak{N}} \dot{\mathfrak{R}} = \mathcal{Q}_n \cdot V, \qquad (2)$$

where

$$\mathcal{Q}_{n} = \omega_{1} \, \omega_{2} \cdots \omega_{n-1} = \frac{2^{n-1} \pi^{\frac{1}{4}(n+2)(n-1)}}{\Gamma\left(\frac{n}{2}\right) \Gamma\left(\frac{n-1}{2}\right) \cdots \Gamma\left(\frac{2}{2}\right)} \quad , \quad \omega_{i} = \frac{2\pi^{\frac{i+1}{2}}}{\Gamma\left(\frac{i+1}{2}\right)} \tag{3}$$

Then the total measure of the positions of \Re which contains some points of \mathfrak{S} is given by the formula

$$\int_{\mathfrak{S} \cap \mathfrak{M} \neq 0} m \hat{\mathfrak{N}} = \rho \mathcal{Q}_n V, \tag{4}$$

where *m* represents the number of the points of \mathfrak{S} contained in \mathfrak{R} at a position and the integration is extended all over the intersection points of \mathfrak{S} and \mathfrak{R} .

2.2 Uniform-point-system and moving surface.

(1). Let us take a uniform-point-system in E_n which is defined by the fundamental cell attached with ρ -points and move a closed hypersurface \Re whose *n*-dimensional volume is V.

Let us estimate the mean value of the number of points belonging to the system which are contained by \Re at a position.

Let us proceed our treatment comparing with my preuious paper [5] in E_3 .

(2) In the same manner with that in the case of E_3 , let us begin with the definition of the domain \mathfrak{A} which consists of $\mu_1 \ \mu_2 \ \ldots \ \mu_n$ -pieces of unit-cell. Here μ_i -pieces are lying along the direction corresponding to T_i . Then, we obtain a point-set $\mathfrak{P}_{\mathfrak{A}}$ belonging to the system which is contained in the domain \mathfrak{A} and consists of $\rho \prod_{i=1}^n \mu_i$ points.

Hereupon, defining two domains $\overline{\mathfrak{A}}$ and $\overline{\mathfrak{A}}$ after the analogy to the case E_3 , we can obtain the superset $\mathfrak{P}_{\mathfrak{A}}$ and the subset $\mathfrak{P}_{\overline{\mathfrak{a}}} - \overline{\mathfrak{a}}$ to the set $\mathfrak{P}_{\mathfrak{a}}$. Here, $\mathfrak{P}_{\mathfrak{a}}$ consists of $\rho_{i=1}^{\mathfrak{M}}$ ($\mu_i + 2\nu_i$)-points of the system and $\mathfrak{P}_{\overline{\mathfrak{a}}} - \overline{\mathfrak{a}}$, $\rho \left\{ \prod_{i=1}^{\mathfrak{M}} (\mu_i + 2\nu_i) - \prod_{i=1}^{\mathfrak{m}} (\mu_i - 2\nu_i) \right\}$ -points of

the system.

S

(3) Under these preparations, let us estimate the mean value of the number of points of the uniform-point-system which are contained by a moving closed hypersurface \Re . First, applying (4) for the point-set $\Re \pi$, we obtain

$$\int_{\mathfrak{B}\overline{\alpha}} m \, \dot{\mathfrak{R}} = \rho \mathcal{Q}_n \, V_{i=1}^n \, (\mu_i + 2\nu_i)$$

$$(5)$$

where ρ denotes the number of points of the system in a unit cell ϑ , V the enclosed volume by \Re and Ω_n is given by (3).

If we divide the integral at the left side of (5) into two parts $I_{P \in x}$ and $I_{P \in x}$ is

S. Oshio

such a total measure of the position of \Re as the origin P attached to \Re is contained in \mathfrak{A} and $I_{P \in \mathfrak{A}}$ is the rest of the integral. Then, we can rewrite (5), as follows,

$$I_{P\in\mathfrak{A}} + I_{P\in\mathfrak{A}} = \rho \mathcal{Q}_n \, V_{II}^n \, (\mu_i + 2\nu_i).$$
⁽⁶⁾

In the same way as befor, if we represent by $\int_{P \in \vartheta} m\Re$ the total measure of positions of \Re so that P attached to \Re may be contained in a unit cell ϑ and \Re may contain $m(\geq 1)$ -points of the system, we can express $I_{P \in \Re}$, as follows,

$$I_{P\in\mathfrak{A}} = \prod_{i=1}^{n} \mu_{i} \int_{P\in\mathfrak{F}} m\hat{\mathfrak{K}}$$

$$\tag{7}$$

On the same account as before, we can put

 $I_{P \in \mathfrak{a}} \leq \rho \mathcal{Q}_n V \{ \prod_{i=1}^n (\mu_i + 2\nu_i) - \prod_{i=1}^n (\mu_i - 2\nu_i) \},$

and therefore

$$\lim_{\mu_i \to \infty} \frac{\prod_{P \in \mathfrak{A}}}{\prod_{i=1}^{n} \mu_i} = 0$$
(8)

Now, if we divide the both members of (6) by $\prod_{i=1}^{n} \mu_i$ and take account of (7) and (8), we obtain the following equation as the limit equation as $\mu_i \to \infty$ (i=1, 2, ..., n)

$$\int_{P \in \mathfrak{g}} m \, \hat{\mathfrak{K}} = \rho \mathcal{Q}_n \, V \,. \tag{9}$$

On the other hand, the tatal measure of \Re at such positions P attached to \Re is contained in a unit cell ϑ is given as follows,

$$\int_{P\in\vartheta} \dot{\Re} = \mathcal{Q}_n C^* \tag{10}$$

where C denotes the volume of a unit cell ϑ .

Hence, dividing (9) by (10), we obtain the following theorem.

THEOREM 1. When a closed hypersurface \Re of the n-dimensional volume V moves in E_n where a uniform-point-system is defined, the mean value \overline{m} of the number of points of the system contained in \Re , is given by

$$\overline{m} = \rho \, \frac{V}{C},\tag{11}$$

where ρ denotes the number of points belonging to a unit cell and the volume of a unit cell.

It is a matter of course that the above theorem comprises the corresponding cases of n=2 [3], or 3 [5] as its special case, and \overline{m} is given by the same expression independently of the dimension of the space.

Consequently, in the special case in which the number of points contained by \Re under these configuration, is exclusively limited to m_1 or m_2 ($m_1 > m_2 \ge 0$), the probability P_1 for the case that the number in question is m_1 is given $P_1 = \frac{\rho V - Cm_2}{C(m_1 - m_2)}$ in every

^{*)} In order to save trouble of reexplanation of the same procedure, we shall speak of the equation (10) as "a limit equation by covering procedure of the whole space E_n with the equation (4)".

number of dimension.

§ 3. Uniform- \mathfrak{S}^k -System and Moving Manifold \mathfrak{R}^r .

3.1. Mean value of the measure $S_{k+r-n} (\mathfrak{S}^k \cap \mathfrak{R}^r)$.

(1) In E_n Let us define a uniform- \mathbb{S}^k -system which is constructed by the fundamental figure-set \mathbb{S}^k of k-dimensional manifolds f_j^k ($j=1,2,\ldots,p$), and move a r-dimensional manifold \Re^r whose r-dimensional volume is finite. Now, we assume that $r+k-n \geq 0$ and let $\mathbb{S}^k \cap \Re^r$ be the (r+k-n)-dimensional manifolds of the intersection of some of \mathbb{S}^k 's with \Re^r and S_{k+r-n} ($\mathbb{S}^k \cap \Re^r$) (k+r-n)-dimensional volume of the intersection $\mathbb{S}^k \cap \Re^r$. Here, when r+k-n=0, S_0 ($\mathbb{S}^k \cap \Re^r$) denotes the number of intersection points of $\mathbb{S}^k \cap \Re^r$. Then let us estimate the mean value S_{k+r-n} ($\mathbb{S}^k \cap \Re^r$) of S_{k+r-n} ($\mathbb{S}^k \cap \Re^r$).

(2) At this time, we have a satisfactory formula [4] by L. A. Santaló. Adjusting it to the present case, we can express it as follows. Let C^k be a fixed k-dimensional manifold and \Re^r a moving r-dimensional manifold in E^n . If $r+k-n \ge 0$, we have

$$\int_{C_k \cap \widehat{\mathbb{R}}^r \neq 0} S_{k+r-n} \left(C^k \cap \widehat{\mathbb{R}}^r \right) \dot{\widehat{\mathbb{R}}} = \frac{\mathcal{Q}_{n+1}\omega_{r+k-n}}{\omega_k \omega_r} S_k \left(C^k \right) S_r \left(\widehat{\mathbb{R}}^r \right) , \qquad (12)$$

where

$$\mathcal{Q}_{n+1} = \omega_1 \, \omega_2 \cdots \omega_{n-1} \omega_n \;, \quad \omega_i = rac{2\pi^{rac{i+1}{2}}}{\Gamma^{\left(rac{i+1}{2}
ight)}}$$

Further, let us use the following formula by L. A. Santaló [4] which gives expression to the total measure of positions of \Re^r which leave a point of \Re^r invariant. That is,

$$\int_{Total} d \, \hat{\mathcal{R}}^{r(P)} = \mathcal{Q}_n \, . \tag{13}$$

(3) Let us find the mean value of S_{k+r-n} ($\mathfrak{S}^k \cap \mathfrak{R}^r$). In the covered space E_n , let us take a domain \mathfrak{N} which contains $\prod_{i=1}^n \mu_i$ -pieces of unit cell ϑ and a figure-set $\mathfrak{S}^k_{\mathfrak{N}}$ which is consisted of $\prod_{i=1}^n \mu_i$ -pieces of unit figure \mathfrak{S}^k . And then two domains $\overline{\mathfrak{N}}$ and $\overline{\mathfrak{N}}$, or a figure superset $\mathfrak{S}^k_{\overline{\mathfrak{N}}}$ and a subset $\mathfrak{S}^k_{\overline{\mathfrak{N}}-\overline{\mathfrak{N}}}$ are determined with reference to \mathfrak{R}^r . Then, using (12), we have

$$\int S_{k+r-n} \left(\mathfrak{S}_{\overline{u}}^{k} \cap \mathfrak{K}^{r} \right) \dot{\mathfrak{K}} = \frac{\Omega_{n+1}\omega_{k+r-n}}{\omega_{k} \, \omega_{r}} S_{k} \left(\mathfrak{S}^{k} \right) S_{r} \left(\mathfrak{K}^{r} \right) \prod_{i=1}^{n} \left(\mu_{i} + 2\nu_{i} \right).$$
(14)
$$\mathfrak{S}_{\overline{w}}^{k} \cap \mathfrak{K}^{r} \neq 0$$

Now, in the same maner as in §2.2, (2), let us denote by $\int_{P \in \mathscr{I}} S_{k+r-n}(\mathfrak{S}_{\overline{\mathfrak{X}}}^k \cap \mathfrak{K}^r) \, \mathfrak{K}$ such a total measure of positions of \mathfrak{K}^r as the origin P of the moving frame attached to \mathfrak{K}^r is contained in a unit cell ϑ and \mathfrak{K}^r has common points with the unit figure \mathfrak{S}^k . Taking the same procedure as in § 2,2. (2), we can obtain the limit equation by the covering procedure of the whole space E_n with the above formula (14), as follows,

S. OSHIO

$$\int_{\Sigma \in \vartheta} S_{k+r-n} \left(\mathfrak{S}^k \cap \mathfrak{K}^r \right) \dot{\mathfrak{K}} = \frac{\mathcal{Q}_{n+1} \ \omega_{k+r-n}}{\omega_k \ \omega_r} \ S_k \left(\mathfrak{S}^k \right) \ S_r \ (\mathfrak{K}^r).$$
(15)

On the other hand, the total measure of \mathbb{R}^r at such a position as P attached to \mathbb{R}^r is contained in a unit cell of the system is given using (13), as follows,

$$\int_{b\in\vartheta} \dot{\Re} = \mathcal{Q}_n C \tag{16}$$

where C denotes the *n*-dimensional volume of a unit cell. Dividing (15) with (16), we have the following theorem.

THEOREM 2. When a r-dimensional manifold \Re^r whose r-dimensional volume is finite moves in E_n where a uniform-k-dimensional manifold \mathbb{S}^k -system is defined, the mean value S_{k+r-n} ($\mathbb{S}^k \cap \Re^r$) of the (k+r-n)-dimensional volume S_{k+r-n} ($\mathbb{S}^k \cap \Re^r$) of the intersection $\mathbb{S}^k \cap \Re^r$ is given by

$$\overline{S_{k+r-n}(\mathfrak{S}^k \cap \mathfrak{R}^r)} = \frac{\omega_n \, \omega_{r+k-n}}{\omega_k \, \omega_r} \cdot \frac{S_k(\mathfrak{S}^k) \, S_r(\mathfrak{R}^r)}{C}, \qquad (17)$$

where $S_k(\mathfrak{S}^k)$ is the sum of k-dimensional volume of the figure set belonging to \mathfrak{S}^k and S_r the r-dimensional volume of \mathfrak{R} and C the n-dimensional volume of a unit cell.

Consequently, it has been definitely showned by the formula (17) that the above mean value is the same with one in the case that the uniform-figure-system is constructed by \Re^r as the fundamental figure and \mathfrak{S}^k is employed for the moving figure.

3.2 Special cases of the theorem (2).

(1) Case (1) k=1, r=n-1

Now, r+k-n=0, so that $S_{k+r-n} (\mathfrak{S}^k \cap \mathfrak{K}^r) = S_0 (\mathfrak{S}^1 \cap \mathfrak{K}^{n-1})$ represents the number m of intersection-points of \mathfrak{S}^1 with \mathfrak{K}^{n-1} .

Therfore

$$\overline{m} = \overline{S_0 \ (\mathfrak{S}^1 \cap \mathfrak{K}^{n-1})} = \frac{\omega_n \, \omega_0}{\omega_1 \, \omega_{n-1}} \cdot \frac{L \, F_{n-1}}{C} = \frac{\Gamma(\frac{n}{1})}{\Gamma(\frac{n+1}{2})} \frac{L F_{n-1}}{\Pi^{\frac{1}{2}} C} \ . \tag{18}$$

The formula gives the mean value of the number of the intersection- points of the moving hypersurface \mathfrak{S} of the (n-1)-dimensional volume F_{n-1} with the curves of the uniform-curve \mathfrak{S}^1 -system defined by a curve-set of length L.

For n=1, \mathfrak{S}^0 reduces a set $\{P_i\}$ of some points, say i=p and \mathfrak{S}^1 reduces a set of line-segments. Then m denotes the number of the points of \mathfrak{K} (P_1, P_2, \ldots, P_p) which stand on the set \mathfrak{S}^1 at a moment. According to (18), we have $\overline{m} = \frac{pL}{C}$.

For n=2, \Re^1 reduces a set of curves of the total length l. Then, the mean value \overline{m} of the number of intesection point of with the uniform curve-system in the plane amount to $\frac{2lL}{\pi C}$.

This is in accord with the result in the plane by L. A. Santaló [3]. For n=3, \Re^2 reduces a set of surfaces of the total surface area F, the mean value \overline{m} of the intersection points of \Re^2 with the curves of the system is given by (18), as follows,

On Mean Values and Geometrical Probabilities in E_n

$$\overline{m} = \frac{LE}{2C}$$
.

The result is identical with that which we obtained in the previous paper [5]. Case (II) k=2, r=n-1.

In the present case, k+r-n=1, so that $S_{k+r-n} (\mathfrak{S}^k \cap \mathfrak{R}^r) = S_1 (\mathfrak{S}^2 \cap \mathfrak{R}^{n-1})$ represents curve length of intersections of \mathfrak{S}^2 with \mathfrak{R}^{n-1} .

Therefore

$$\bar{\mathbf{s}} = \overline{S_1} \quad (\bar{\mathbf{s}}^2 \cap \bar{\mathbf{R}}^{n-1}) = \frac{\omega_n \, \omega_1}{\omega_2 \, \omega_{n-1}} \quad \frac{S_2 \, (\bar{\mathbf{s}}^2) \, S_{n-1} \, (\bar{\mathbf{R}}^{n-1})}{C} ,$$

$$\bar{\mathbf{s}} = \frac{\pi^{\frac{1}{2}} \, \Gamma\left(\frac{n}{2}\right)}{2\Gamma\left(\frac{n+1}{2}\right)} \frac{F \cdot f_{n-1}}{C} ,$$
(19)

or

where F is S_2 (\mathfrak{S}^2), precisely, the total surface area of \mathfrak{S}^2 and $f_{n=1}$ is the (n-1)-dimensional volume of \mathfrak{R}^{n-1} .

For n=2, $\Re^{n-1}=\Re^1$ reduces a set of curves of the total curve-length l. Then \mathbb{S}^2 is a set of closed curves of the total plane area F. For s which is the mean value of the length of the curve segments which are included by the closed curves belong ing to the uniform- \mathbb{S}^2 -system, we have

$$\bar{s} = \frac{F \cdot l}{C}$$
 (20)

For n=3, $\Re^{n-1}=\Re^2$ reduces a set of surfaces of the total surface area f, \mathfrak{S}^2 is a set of surfaces of the total surface area F. In the present case, denotes the mean value of the length of the intersection-curves of moving \Re^2 with the uniform-surface \mathfrak{S}^2 -system. Then, we have

$$\bar{s} = \frac{\pi \cdot F \cdot f}{4C} \quad (21)$$

This is the same with the result which we obtained in the previous paper (5).

4. Geometrical Probabilities.

4.1. Kinematic formula and geometrical probabilies.

Let us suppose that a uniform-curve-system is defined with a fundamental cell of n-dimensional volume and a fundamental curve-set of the total length L in E_n . Now, taking a convex hypersurface \Re of the (n-1)-dimensional volume f_{n-1} which encloses a *n*-dimensional manifold \mathfrak{G}_1 of the volume V, let \Re move in the space E_n . Then, we can classify \Re 's position with reference to the uniform-curve-system into three cases as follows;

(i) \Re includes completely one *or* any pieces of curves belonging to the uniform-curve-system,

(ii) \Re has common points with the uniform-curve-system,

(iii) $\&_1$ has no common point with the uniform-curve-system.

Let us estimate the probabilities P_i (i = 1, 2, 3) for one of the above classified cases which may occur. For the purpose, we have the following kinematic formula (2) in

the euclidean space E_n by S.S.Chern,

$$\int K (D_0 D_1) \Sigma_1 = J_n \{ M_{n-1}^{(0)} V + M_{n-1}^{(1)} V_0 + \frac{1}{n} \sum_{k=0}^{n-2} I_{k+1}^n \} M_k^{(0)} M_{n-2=k}^{(1)} \}, \quad (22)$$

where $K (D_0 \cdot D_1) = I_{n-1} X (D_0 \cdot D_1).$

In our case, we have following values for fundamental curve-set as the fixed figure Σ_0 ;

$$W_0 = 0, \ M_i^{(0)} = 0 \ (i = 1, 2, ..., n-3) \qquad M_{n-2}^{(0)} = \frac{\omega_{n-2} L}{n-1}, \qquad M_{n-1}^{(0)} = \omega_{n-1},$$

and for the closed hypersurface \Re as the moving figure Σ_1 : $V_1 = V, \ M_0^{(1)} = f_{n-1}.$

If we denote the number of the intersection points of \Re with the curves of the system by m in general, we have

$$K(D_0 \cdot D_1) = m \omega_{n-1}.$$

Moreover, according to our symbol, J_n equals to Ω_n . Then, the kinematic formula(22) reduces as follows,

$$\int m\dot{\Re} = \Omega_n V + \frac{\Omega_{n-1} \omega_{n-2}}{n-1} \cdot L \cdot f_{n-1}.$$

$$\mathfrak{G}_1 \cap \mathfrak{S}^1 \neq 0$$
(23)

Now, let us suppose to take a domain $\overline{\mathfrak{N}}$ in the space E^n covered with the uniform-curvesystem and denote the curve-set of the system in $\overline{\mathfrak{N}}$ by $\mathfrak{S}^{\frac{1}{\mathfrak{N}}}_{\overline{\mathfrak{N}}}$, then using (23), we have

$$\int m\dot{\Re} = (\mathcal{Q}_n V + \frac{\mathcal{Q}_{n-1} \omega_{n-2}}{n-1} \cdot L \cdot f_{n-1}) \prod_i (\mu_i + 2\nu_i).$$
(24)
$$\mathfrak{G}_{\overline{\mathfrak{U}}} + \mathfrak{O}$$

In the same manner as in § 2.2, (2), denoting by $\int_{P \in \vartheta} m \dot{\Re}$ such a total measure of positions of \Re as the origin P attached to \Re is contained in a unit cell ϑ and \mathfrak{G}_1 has common points with some of the curves in ϑ and taking the covering procedure of the whole space E_n with (24), we have the following limit equation,

$$\int_{P \in \mathscr{I}} m\dot{\mathfrak{K}} = \mathcal{Q}_n \ V + \frac{\mathcal{Q}_{n-1} \ \omega_{n-2}}{n-1} L \cdot f_{n-1}.$$
⁽²⁵⁾

Hereupon, we can divide the integral standing at the left side of (25) into tow parts, that is

$$\int_{\mathbb{S} \subset \mathfrak{G}_1} \dot{\mathfrak{K}} + \int_{\mathfrak{M}} m \, \dot{\mathfrak{K}} = \mathcal{Q}_n \, V + \frac{\mathcal{Q}_{n-1} \cdot \omega_{n-2}}{n-1} \, L \cdot f_{n-1} \, ,$$

where C represents any pieces of curves belonging to a unit cell.

On the other hand, the integral $\int_{\mathfrak{S}'} m \dot{\mathfrak{R}}$ can be written by (15) as follows,

$$\int m \dot{\Re} = \frac{\mathcal{Q}_{n+1} \omega_0}{\omega_{n-1} \omega_1} \cdot L \cdot f_{n-1}, \qquad (26)$$

$$\int_{\mathfrak{G}\subset\mathfrak{G}_{1}} \dot{\mathfrak{K}} = \mathfrak{Q}_{n} V + \left(\frac{\mathfrak{Q}_{n-1} \cdot \omega_{n-2}}{n-1} - \frac{\mathfrak{Q}_{n+1} \cdot \omega_{0}}{\omega_{n-1} \cdot \omega_{1}}\right) L \cdot f_{n-1}$$
(27)

Then, using (10), (26) and (27), we have

$$\begin{cases} p_{1} = \frac{V}{C} + \left(\frac{\mathcal{Q}_{n-1} \cdot \omega_{n-1}}{n-1} - \frac{\mathcal{Q}_{n+1} \cdot \omega_{0}}{\omega_{n-1} \cdot \omega_{1}}\right) - \frac{L \cdot f_{n-1}}{C}, \\ p_{2} = \frac{\omega_{n} \cdot \omega_{0}}{\omega_{n-1} \cdot \omega_{1}} - \frac{L \cdot f_{n-1}}{C}, \\ p_{3} = 1 - (p_{1} + p_{2}). \end{cases}$$
(28)

For example, for n = 3, we have

$$p_1 = \frac{4V - Lf_2}{4C}$$
 $p_2 = \frac{Lf_2}{2C}$, $p_3 = \frac{4(C - V) - Lf_2}{4C}$.

The result is identical with the one which we obtained the previous paper in the space E_3 .

References

- (1) W. Blaschke, Ermittlung der Dichten fuer lineare Unterräume im E_n . Actualites scientifiques et industrielles 252, Paris 1935, Hermann & Cie.
- (2) S. S. Chern, On the kinematic formula in the euclidean space of n-dimensions, Ame. J. Math., vol.74 (1952) pp.227-236.
- (3) L. A. Santaló, Sobre valores medios y probabilidades geometricas, Abhandlungen aus dem mathematischen Seminar der Hansischen Univ. Bd. 13 (1940) pp.284-294.
- (4) L. A. Santaló, Geometria Integral en Espacios de Curvatura Constante, Publicacions de la Comision Nacional de la Energia Atomica, Serie Matematica, vol. 1-Nº 1 Buenos Aires, 1952.
- (5) S. Oshio, On mean values and geometrical probabilities in E₃, Science Reports of the Kanazawa University, Vol.111 (1955) pp.35-43.