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On Mean Values and Geometrical Probabilities in E,,
By

Shigeru Osmio

(Received February 3, 1955)

Introduction. In this report V.3, pp.35-43, we treated the subject in the Euclidean
three—space 3 [5].* The aim of the present paper is to generalize my previous result
(5] in an Euclidean n-space £, . For the purpose, we shall first define the uniform-
figure-systems in E, in the same manner as befor, and discuss the subject under classified
cases.

§ 1. Definition

1.1. Covering of Euclidean Space £, .

Let 6, be a closed hypersurface in the Euclidean n-space E, . Let us define a
discontinuous rigid motion 71 which operates upon o, and satisfies with the following
condition (). Let us begin with marking ¢, at its initial position in £, . If we operate
T upon 6, g, will move to the next position. Again, let us mark o, at such a position.

Let us set the following condition (), that is; (a) T he two adjacent surfaces have
a part of them in common but neither of them has any inner point of the domain
enclosed by the other surface in common. Let us operate 71 and Tl_l upon ¢, in the
same direction™) 7i-times in all, then we obtain a tubiformsurface ¢; which is joined
by #i—pieces of ¢, piece by piece. Subsequently, let us define another rigid motion 72
which operates upon ¢, in a direction which is independent of that of 71 and satisfies

with the condition («). Again, operating 72 and T2 ! upon o, ix~times in all, we obtain
a leaf-like hypersurface which is composed of #s-pieces of o, piece by piece. Let us
denote this leaf-like hypersurface by o, .

In such a manner, let us suppose that the construction, by means of which a
series {o, } of hypersurfaces and a series {7 } of discontinuous rigid motions of which

T, operates upon o,_; ip-times in common with 7' " and satisfies the condition (),
are defined, in succession, k=1,2,..., n, and a closed hypersurface o, is obtained at
last. Then o, will be composed of 71 ¢2 ...2, —pieces of surfaces congruent to ¢, , or in
other words, the whole domain which is enclosed by o, is divided into #1142 ...Z, —pieces

each of which is congruent to the domain enclosed by ¢, without overlapping or without

*) Number in brackets refer to the bibliography at the end of the paper.
*%) It can be pfoved that any given rigid motion in £, is the resultant of a uniquely defined

rotation and a uniquely defined translation along the axis of the rotation.



200 S. Osmuio

leaving gaps. After this construction, if we increase 41, 42 ,... fy—1 and 7, to infinity
simultaneously, the whole space X, is covered by oo7 —pieces of domains, each being
congruent to the domain enclosed by ¢, , without overlapping or without leaving gaps.
Now let us call such a construction” a covering of £, by ¢y, the domain ¢ enclosed by
gy, ,a fundamental cell“ in the covering and each domain which is arranged by the
covering, ,, a unit cell“ in the covering.
1.2. Uniform Figure Systems

Connecting with the above covering of E, by o, let us define the uniform arrangements
of figures. For the purpose, let us prepare the following figure—set:

(k) A set 6k ={ ff } of k-dimensional manifolds f].k( i=1,2,...,9),p <o and the

sum®) of k-dimensional measure of f] .k< i=1, 2,..., p) is finite.

Explaining in detail, the meaning of the above definition is as follows. For k=0, fjo

reduces a point and the sum of zero-dimensional measure of f] g is equal to the number
of these points, namely p. For &2 =1, fj ! reduces a curve and the one-dimensional measure

of f] ! is equal to its curve length, and so forth. Now, if we cover E, by a fundamental
cell o, attached with a set &% of k-dimensional manifolds, every unit cell will be alloted
with a figure set &% .

At this time, let us select the figure set &% in the covering of £, by ¢, with &%,
(B) every figure set at all wnit cells may nof intersect with any set af another cells.
Now, in such a covering of &£, by o, attached with a figure set ©*, let us call an original
set Gk of k-dimensional manifolds, by the name of ,the fundamental figure* and every
one alloted to each unit cell, ,the unit figure.“ In consequence, we shall obtain sucha
uniform arrangement of the unit figure alloted to each unit cell in whole space £, .

In the end, let us cross out all the covering hypersurfaces, then we obtain a uniform
arrangement of a unique figure set &% in E,. Let us classify such a uniform arrangement
of ¢,in E7 correspording to the kind of the fundamental figure (%) by calling ,,uniform-
k—dimensional manifold-system in £, “. Hence,

(0) a uniform—point-system,
(1) a uniform-curve-system,
(2) a uniform-surface-system, -

(n-1) a uniform-hypersurface-system.
§& 2. Uniform-Point-System in £

2.1 Set of points of a finite number. Let <9 be a set {P;} of points P; (z=1, 2,..,0)
which are fixed in £, and & a closed hypersurface whose n-dimensional enclosed volume

*) We shall speak it by calling k-dimensional measure of in the following.
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is V and which moves in £, .
Then, using the kinematic density, by W. Blaschke [1]

. n, n—1
& = IIs; 1T o , . )
i=1 =1

we can obtain the following formula, which represents the total measure of positions of
moving & by which a fixed point P is contained, that is,

[8= 2V, @)

p=s
where

n—1 1 (n+2)(n—1) 7z‘ -1
[ — 2 74
&y =w1 @ rop—1=7

K - 2 Wi =
T3 T .

Then the total measure of the positions of & which contains some points of $ is given

by the formula
@n&[ﬁ:ﬂs}‘ -t @

where m represents the number of the points of & contained in & at a position and the
integration is extended all over the intersection points of & and &.

2.2 Uniform—point-system and moving surface.

(1). Let us take a uniform-point-system in £ which is defined by the fundamental cell
attached with p—points and move a closed hypersurface & whose #-dimensional volume is V.

Let us estimate the mean value of the number of points belonging to the system which
are contained by & at a position.

Let us proceed our treatment comparing with my preuious paper [5) in Es .

(2) In the same manuer with that in the case of E3 , let us begin with the definition
of the domain ? which consists of 1 2 ...u—pieces of unit—cell. Here u;—pieces are
lying along the direction corresponding to 7°; . Then, we obtain a. point-set P

n
belonging to the system which is contained in the domain N and consists of p II u; points.
1

j=

Hereupon, defining two domains 9 and A after the analogy to the case £3, we can

obtain the superset LBu and the subset Px—# to the set Pu. Here, Pu consists of

u 7 7

oIl (ze; +2y; )—points of the system and Ba—x, o {1 Cu; +2v; )-I (i — 2vi )—points of
i=1 =1 i1

the system.

(3) Under these preparations, let us estimate the mean value of the number of points
~ of the uniform-point-system which are contained by a moving closed hypersurface &.
First, applying (4) for the point-set P&, we obtain

i om R = 02y Vﬁ Cui +2v; )
i=1

S}?}rﬁﬂlo ’ )
where p denotes the number of points of the system in a unit cell ¢, V the enclosed
volume by & and 2, is given by (3). ' \

If we divide the integral at the left side of (5) into two parts Ip=x and Ip&x : Ipeu is
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such a total measure of the position of & as the origin P attached to & is contained in
A and IpzZx is the rest of the integral. Then, we can rewrite (5), as follows,

n
Ipew +1pgu= 02, V.ZI1 Cupi +2v;i ). (6)
=

In the same way as befor,if we represent by f mfy? the total measure of positions of
_ PE#
® so that P attached to & may be contained in a unit cell ¥ and & may contain #(=1)

—points of the system, we can express Ipcx, as follows,
n .
Ipew = II p; f ms )
i=1
PEs
On the same account as before, we can put
7n 7
Ipew = 02y V{_HlQli +2vi ) — 11 (pi —2vi )},
1= 1=

and therefore

lim —LrEe

pmi—> 2 T ui @
i=1

Now, if we divide the both members of (6) by ﬁ ;i and take account of (7) and (8),
i=1

we obtain the following equation as the limit equation as u#; —oo (i=1,2,..., %)
[ m é‘ = @.Q n V o
. 9
PEs @)

On the other hand, the tatal measure of & at such positions P attached to & is
contained in a unit cell & is given as follows,
[(f=a.C
PE?
where C denotes the volume of a unit cell .

(10)

Hence, dividing (9) by (10), we obtain the following theorem.

TueoreM 1. When a closed hypersurface & of the n~dimensional volume V moves in
E, where a uniform-goini-system is defined, the wmean value m of the number of
points of the system cortained in & | is given by

ﬁ:p_y_,

. c an
where o denotes the number of poinis belonging to a unit cell and the volume of a unit
cell.

It is a matter of course that the above theorem comprises the corresponding cases of
n=2 (3], or 3 (5] as its special case, and m is given by the same expression
independently of the dimension of the space.

Consequently, in the special case in which the number of points contained by & under
these configuration, is exclusively limited to mu or me (w21 >me = 0), the probability

. . . . . 2 .
P for the case that the number in question is #u is given Pi =l om0 every

*¥) In order to save trouble of reexplanation of the same procedure, we shall speak of the
equation (10) as ,a limit equation by covering procedure of the whole space £, with the
equation (4)“.
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number of dimension.

§ 3. Uniform-&* -System and Moving Manifold & .

3.1. Mean value of the measure Sp+,—n (% NK” ).

(1) In E, Let us define a uniform-©&*-system which is constructed by the
fundamental figure-set &% of k-~dimensional manifolds fjic (7=1,2,..., D), and move a
r—-dimensional manifold & whose r-dimensional volume is finite. Now, we assume that
v+k—n=0 and let &% n & be the (r+k—n)-dimensional manifolds of the intersection
of some of &% 's with & and Sp+,—n (€*n &) (k+7r—2n)-dimensional volume of the
intersection Gt 7 & . Here, when #+k—n=0, So (&t N & ) denotes the number of
intersection points of €% n & . Then let us estimate the mean value Spsr—n (88N {T)
of Sptr—n (BEN K.

(2) At this time, we have a satisfactory formula (4] by L. A. Santaldé. Adjusting
it to the present case, we can express it as follows. Let CF be a fixed Z/A-dimensional
manifold and & a moving 7-dimensional manifold in E» . If »+k—n =0, we have

J Sk (Cr gy = Lrlortion g, iy s, (@) (12)
Cpn §r %0 ’
where
it
Qn—H = WL W2t Wp—1Wy w; = “2167:1‘)‘
'~

Further, let us use the following formula by L. A. Santal6 (4] which gives
expression to the total measure of positions of &7 which leave a point of & invariant.
That is,

P _

(3) Let us find the mean value of Sgyr—yn (& N{7). In the covered space E; , let

n
us take a domain % which contains I u;—pieces of unit cell @ and a figure-set 6]; which
i=1
7 _ —
is consisted of I . -pieces of unit figure & . And then two domains 2 and A, or a
i=1
figuresuperset Qi} and a subset 6%,5 are determined with reference to £ . Then, using
(12), we have

. B . _n -
[ Skirn (Bgnf7) fi= ?JJT‘”&-;::L Sk (&R S, (%) I (i +2v:). (14)
{1 r 1=
k
Gz *0
Now, in the same maner as in §2. 2, (2), let us denote by f Skrr—n (@3’; A®7 ) { such

PE?
a total measure of positions of & as the origin P of the moving frame attached to & is

contained in a unit cell ¥ and §” has common points with the unit figure &% . Taking
the same procedure as in § 2,2. (2), we can obtain the limit equation by the covering
procedure of the whole space E, with the above foxmula (14), as follows,
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[ Skirn(Sh0gr) fi= EntiOkiron 5, (gry 5, (80). (15)
PE» Wk Or

On the other hand, the total measure of & at sucha position as P attached to & is

contained in a unit cell of the system is given using (13), as follows,
[ i=2.c (16)
pE?D

where C denotes the n-dimensional volume of a unit cell. Dividing (15) with (16), we

have the following theorem.

Tueorem 2. When a r—dimensional manifold & whose r-dimensional volume is finite
moves in E, where a uniform-k-dimensional manifold Sk —system is defined, the mean
value Spiy—n (GF 8" ) of the (k+v—n)-dimensional volume Spir—n (G 0OKT) of
the intersection Sk n{7 is given by

Sk-!—r——n( Gk ﬂ‘@r ) =

) an

where Sp (k) is the sum of k-dimensional volume of ithe figure sei belonging fto

Wn Wr+k—n_ Sk<@k) S;v{@r)
C

WE Wy

&k and S, the r-dimensional volume of & and C ithe n-dimensional volume of a unit
cell.

Consequently, it has been definitely showned by the formula (17) that the above mean
value is the same with one in the case that the uniform-figure-system is constructed
by &7 as the fundamental figure and ©* is employed for the moving figure.

3.2 Special cases of the theorem (2).

(1) Case (1) k=1, r=n—1
Now, 7+Ek—n=0, so that Spi,—n (&% N{" )=S5¢ ( EL nQ~»—1) represents the number m
of intersection—-points of &! with &n-1, )

Therfore

1 o~ Ay —1° — Wi WO . LFn_-]_ — 11(_1":_)_ LF7’L'—1 ‘
W1 Wp—1 C [T(ﬂ;”_l) ﬂr,_;__ C (18)

The formula gives the mean value of the number of the intersection- points of the
moving hypersurface © of the (z—1)—-dimensional volume 7,1 with the curves of the
uniform-curve ©&! -system defined by a curve-set of length L.

For n=1, €O reduces a set {P;} of some points, say ¢=p and €! reduces a set of
line-segments. Then e denotes the number of the points of & (Pi, P2 ,...Pp) which

pL

stand on the set &! at a moment. According to (18), we have m =c-.

For n=2, § reduces a set of curves of the total length /. Then, the mean value m
of the number of intesection point of with the uniform curve-system in the plane amount

20L
nC

This is in accord with the result in the plane by L. A. Santalé (3]. For n=3, i?

to

reduces a set of surfaces of the total surface area F, the mean value m of the intersection
points of &2 with the curves of the system is given by (18), as follows,
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- LE .
w— ”2' C"
The result is identical with that which we obtained in the previous paper [5].
Case (II) k=2, r=n—1.
In the present case, k+7—n=1, so that Spr,—pn (G N{" ) =S; (&2 n{n-1) represents

curve length of intersections of &2 with $7-1 .

Therefore
ey Spmger, o SN OF 03 So (62) Sy (§tn—1)
s=.51 (& nRn—1) = i C s
or _ 7L'é F(L_i,) - f?z—l
S = n ’
ar(*y) ¢ (19)

where F is S2 (62), precisely, the total surface area of &2 and fp-1 is the (n—1D
~dimensional volume of §»—1,

For n=2, f7-1={"* reduces a set of curves of the total curve-length /. Then €%is a
set of closed curves of the total plane area F. For s which is the mean value of the
length of the curve segments which are included by the closed curves belong ing to the

uniform-? -system, we have

pﬁ,

o el
s= ¢ (20)

For n=3, ®n—1=§2 reduces a set of surfaces of the total surface area f, &2 is a set of
surfaces of the total surface area F. In the present case, denotes the mean value of the
length of the intersection-curves of moving &2 with the uniform-surface &?2 —system.

Then, we have

- 7r~F-_]:_.
5= T4 2D

This is the same with the result which we obtained in the previous paper [5].

4. Geometrical Probabilities.

4.1. Kinematic formula and geometrical probabilies.

Let us suppose that a uniform-curve-system is defined with a fundamental cell of
n—dimensional volume and a fundamental curve-set of the total length L in £, . Now,
taking a convex hypersurface & of the (#—1)-dimensional volume f,—1 which encloses a
n~dimensional manifold ¢ of the volume V, let § move in the space E, . Then, we
can classify &'s position with reference to the uniform-curve-system into three cases as
follows;

(i) & includes completely one or any pieces of curves belonging to the uniform—
curve-system,

(ii) & has common points with the uniform-curve-system,

(iii) ®@; has no common point with the uniform-curve-system.

Let us estimate the probabilities P; (£=1, 2, 3) for one of the above classified cases

which may occur. For the purpose, we have the following kinematic formula (2) in



206 S. Osuio

the euclidean space £, by S.5.Chern,

S E DO = 1M vam® vor S M My, e

hoo LT g n—2=k
where K (Do -D1 >=In_.1 X (Do »D] )

In our case, we have following values for fundamental curve-set as the fixed fiqure X ;

Wo=0, M{"=0 (=1, 2,..., n=3) pfo,— @n=2 L O

Gnn L M, 1= oni

and for the closed hypersurface & as the moving figure 21 ; Vi =V, MDD = f,—1.
If we denote the number of the intersection points of & with the curves of the system
by m in general, we have

K (Do - Dy )=m wp-1.

Moreover, according to our symbol, J, equals to @, . Then, the kinematic formula(22)
reduces as follows,

f WIR =8, V+ Q- 7/;_“?%77;,‘ Lfp.

&, Ng' 0

(@3

Now, let us suppose to take a domain I in the space E* covered with the uniform-curve-

system and denote the curve-set of the system in 9 by 6% , then using (23), we have

[ mf=(0uv + L0t L p DT (4200 cy
7

1
@106??#0

In the same manner as in § 2.2, (2), denoting by f m § such a total measure of
PE?
positions of ® as the origin P attached to & is contained in a unit cell ¥ and ©: has
common points with some of the curves in ¢ and taking the covering procedure of the
whole space E, with (24), we have the following limit equation,

-Q a)n 2 Lfn . (25>

{‘ me =0, V + -
pes
Hereupon, we can divide the integral standing at the left side of (25) into tow parts,
that is
. . Q _
[+ [mi=0,v+ 092
CcB;  GINRx0

L][” 1,

where € represents any pieces of curves belonging to a unit cell.

On the other hand, the integral Jf m{ can be written by (15) as follows,

&/ N® 20
. n+1 wo :

— e T - fo 6
fMR Wp—1 W1 L fn 1 <2 )
glna o

3 Qp—1. WDp—2 Qn+] WO = R
f o=V ( n—1 T on-1- ot ) LS @D
Cce;
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Then, using (10), (26) and (27), we have

(. _ VvV CPn—1. wn—1 Lpvi.w0 \ L. fu-i1

J lbj - C * ( n_l Wp—1. W1 ) C ’
P = on . w0 L. fu-1

! - Wp—1 W1 5 ’ (28)
pa=1— (P +p2).

For example, for # =3, we have

_AV-Lf . Lf _ 4=V = Lf
D ic br=-—"r, D= ic .

The result is identical with the one which we obtained the previous paper in the space Es .

&y
(2
3
(€Y

)
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